Copied to
clipboard

G = D46D30order 480 = 25·3·5

2nd semidirect product of D4 and D30 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D46D30, C233D30, D6025C22, C60.84C23, C30.60C24, C1592+ 1+4, D30.26C23, Dic3023C22, Dic15.28C23, (C6×D4)⋊7D5, (C2×C4)⋊3D30, (C5×D4)⋊22D6, (D4×C30)⋊7C2, (C2×D4)⋊7D15, (D4×C10)⋊7S3, (C2×C20)⋊12D6, (D4×D15)⋊11C2, (C3×D4)⋊22D10, (C2×C12)⋊12D10, C55(D46D6), (C2×C60)⋊8C22, (C22×C6)⋊9D10, C35(D46D10), (C22×C10)⋊12D6, (C2×C30).9C23, D42D1511C2, C6.60(C23×D5), C2.8(C23×D15), (C4×D15)⋊10C22, (D4×C15)⋊24C22, C157D410C22, C10.60(S3×C23), (C22×C30)⋊5C22, D6011C215C2, C4.21(C22×D15), C20.134(C22×S3), (C2×Dic15)⋊4C22, C12.132(C22×D5), (C22×D15)⋊3C22, C22.6(C22×D15), (C2×C157D4)⋊11C2, (C2×C6).16(C22×D5), (C2×C10).17(C22×S3), SmallGroup(480,1171)

Series: Derived Chief Lower central Upper central

C1C30 — D46D30
C1C5C15C30D30C22×D15D4×D15 — D46D30
C15C30 — D46D30
C1C2C2×D4

Generators and relations for D46D30
 G = < a,b,c,d | a4=b2=c30=d2=1, bab=cac-1=a-1, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 1940 in 332 conjugacy classes, 119 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, C23, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C15, C2×D4, C2×D4, C4○D4, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, D15, C30, C30, 2+ 1+4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C4○D12, S3×D4, D42S3, C2×C3⋊D4, C6×D4, Dic15, C60, D30, D30, C2×C30, C2×C30, C2×C30, C4○D20, D4×D5, D42D5, C2×C5⋊D4, D4×C10, D46D6, Dic30, C4×D15, D60, C2×Dic15, C157D4, C2×C60, D4×C15, C22×D15, C22×C30, D46D10, D6011C2, D4×D15, D42D15, C2×C157D4, D4×C30, D46D30
Quotients: C1, C2, C22, S3, C23, D5, D6, C24, D10, C22×S3, D15, 2+ 1+4, C22×D5, S3×C23, D30, C23×D5, D46D6, C22×D15, D46D10, C23×D15, D46D30

Smallest permutation representation of D46D30
On 120 points
Generators in S120
(1 114 54 71)(2 72 55 115)(3 116 56 73)(4 74 57 117)(5 118 58 75)(6 76 59 119)(7 120 60 77)(8 78 31 91)(9 92 32 79)(10 80 33 93)(11 94 34 81)(12 82 35 95)(13 96 36 83)(14 84 37 97)(15 98 38 85)(16 86 39 99)(17 100 40 87)(18 88 41 101)(19 102 42 89)(20 90 43 103)(21 104 44 61)(22 62 45 105)(23 106 46 63)(24 64 47 107)(25 108 48 65)(26 66 49 109)(27 110 50 67)(28 68 51 111)(29 112 52 69)(30 70 53 113)
(1 71)(2 115)(3 73)(4 117)(5 75)(6 119)(7 77)(8 91)(9 79)(10 93)(11 81)(12 95)(13 83)(14 97)(15 85)(16 99)(17 87)(18 101)(19 89)(20 103)(21 61)(22 105)(23 63)(24 107)(25 65)(26 109)(27 67)(28 111)(29 69)(30 113)(31 78)(32 92)(33 80)(34 94)(35 82)(36 96)(37 84)(38 98)(39 86)(40 100)(41 88)(42 102)(43 90)(44 104)(45 62)(46 106)(47 64)(48 108)(49 66)(50 110)(51 68)(52 112)(53 70)(54 114)(55 72)(56 116)(57 74)(58 118)(59 76)(60 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 113)(2 112)(3 111)(4 110)(5 109)(6 108)(7 107)(8 106)(9 105)(10 104)(11 103)(12 102)(13 101)(14 100)(15 99)(16 98)(17 97)(18 96)(19 95)(20 94)(21 93)(22 92)(23 91)(24 120)(25 119)(26 118)(27 117)(28 116)(29 115)(30 114)(31 63)(32 62)(33 61)(34 90)(35 89)(36 88)(37 87)(38 86)(39 85)(40 84)(41 83)(42 82)(43 81)(44 80)(45 79)(46 78)(47 77)(48 76)(49 75)(50 74)(51 73)(52 72)(53 71)(54 70)(55 69)(56 68)(57 67)(58 66)(59 65)(60 64)

G:=sub<Sym(120)| (1,114,54,71)(2,72,55,115)(3,116,56,73)(4,74,57,117)(5,118,58,75)(6,76,59,119)(7,120,60,77)(8,78,31,91)(9,92,32,79)(10,80,33,93)(11,94,34,81)(12,82,35,95)(13,96,36,83)(14,84,37,97)(15,98,38,85)(16,86,39,99)(17,100,40,87)(18,88,41,101)(19,102,42,89)(20,90,43,103)(21,104,44,61)(22,62,45,105)(23,106,46,63)(24,64,47,107)(25,108,48,65)(26,66,49,109)(27,110,50,67)(28,68,51,111)(29,112,52,69)(30,70,53,113), (1,71)(2,115)(3,73)(4,117)(5,75)(6,119)(7,77)(8,91)(9,79)(10,93)(11,81)(12,95)(13,83)(14,97)(15,85)(16,99)(17,87)(18,101)(19,89)(20,103)(21,61)(22,105)(23,63)(24,107)(25,65)(26,109)(27,67)(28,111)(29,69)(30,113)(31,78)(32,92)(33,80)(34,94)(35,82)(36,96)(37,84)(38,98)(39,86)(40,100)(41,88)(42,102)(43,90)(44,104)(45,62)(46,106)(47,64)(48,108)(49,66)(50,110)(51,68)(52,112)(53,70)(54,114)(55,72)(56,116)(57,74)(58,118)(59,76)(60,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,113)(2,112)(3,111)(4,110)(5,109)(6,108)(7,107)(8,106)(9,105)(10,104)(11,103)(12,102)(13,101)(14,100)(15,99)(16,98)(17,97)(18,96)(19,95)(20,94)(21,93)(22,92)(23,91)(24,120)(25,119)(26,118)(27,117)(28,116)(29,115)(30,114)(31,63)(32,62)(33,61)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)(43,81)(44,80)(45,79)(46,78)(47,77)(48,76)(49,75)(50,74)(51,73)(52,72)(53,71)(54,70)(55,69)(56,68)(57,67)(58,66)(59,65)(60,64)>;

G:=Group( (1,114,54,71)(2,72,55,115)(3,116,56,73)(4,74,57,117)(5,118,58,75)(6,76,59,119)(7,120,60,77)(8,78,31,91)(9,92,32,79)(10,80,33,93)(11,94,34,81)(12,82,35,95)(13,96,36,83)(14,84,37,97)(15,98,38,85)(16,86,39,99)(17,100,40,87)(18,88,41,101)(19,102,42,89)(20,90,43,103)(21,104,44,61)(22,62,45,105)(23,106,46,63)(24,64,47,107)(25,108,48,65)(26,66,49,109)(27,110,50,67)(28,68,51,111)(29,112,52,69)(30,70,53,113), (1,71)(2,115)(3,73)(4,117)(5,75)(6,119)(7,77)(8,91)(9,79)(10,93)(11,81)(12,95)(13,83)(14,97)(15,85)(16,99)(17,87)(18,101)(19,89)(20,103)(21,61)(22,105)(23,63)(24,107)(25,65)(26,109)(27,67)(28,111)(29,69)(30,113)(31,78)(32,92)(33,80)(34,94)(35,82)(36,96)(37,84)(38,98)(39,86)(40,100)(41,88)(42,102)(43,90)(44,104)(45,62)(46,106)(47,64)(48,108)(49,66)(50,110)(51,68)(52,112)(53,70)(54,114)(55,72)(56,116)(57,74)(58,118)(59,76)(60,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,113)(2,112)(3,111)(4,110)(5,109)(6,108)(7,107)(8,106)(9,105)(10,104)(11,103)(12,102)(13,101)(14,100)(15,99)(16,98)(17,97)(18,96)(19,95)(20,94)(21,93)(22,92)(23,91)(24,120)(25,119)(26,118)(27,117)(28,116)(29,115)(30,114)(31,63)(32,62)(33,61)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)(43,81)(44,80)(45,79)(46,78)(47,77)(48,76)(49,75)(50,74)(51,73)(52,72)(53,71)(54,70)(55,69)(56,68)(57,67)(58,66)(59,65)(60,64) );

G=PermutationGroup([[(1,114,54,71),(2,72,55,115),(3,116,56,73),(4,74,57,117),(5,118,58,75),(6,76,59,119),(7,120,60,77),(8,78,31,91),(9,92,32,79),(10,80,33,93),(11,94,34,81),(12,82,35,95),(13,96,36,83),(14,84,37,97),(15,98,38,85),(16,86,39,99),(17,100,40,87),(18,88,41,101),(19,102,42,89),(20,90,43,103),(21,104,44,61),(22,62,45,105),(23,106,46,63),(24,64,47,107),(25,108,48,65),(26,66,49,109),(27,110,50,67),(28,68,51,111),(29,112,52,69),(30,70,53,113)], [(1,71),(2,115),(3,73),(4,117),(5,75),(6,119),(7,77),(8,91),(9,79),(10,93),(11,81),(12,95),(13,83),(14,97),(15,85),(16,99),(17,87),(18,101),(19,89),(20,103),(21,61),(22,105),(23,63),(24,107),(25,65),(26,109),(27,67),(28,111),(29,69),(30,113),(31,78),(32,92),(33,80),(34,94),(35,82),(36,96),(37,84),(38,98),(39,86),(40,100),(41,88),(42,102),(43,90),(44,104),(45,62),(46,106),(47,64),(48,108),(49,66),(50,110),(51,68),(52,112),(53,70),(54,114),(55,72),(56,116),(57,74),(58,118),(59,76),(60,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,113),(2,112),(3,111),(4,110),(5,109),(6,108),(7,107),(8,106),(9,105),(10,104),(11,103),(12,102),(13,101),(14,100),(15,99),(16,98),(17,97),(18,96),(19,95),(20,94),(21,93),(22,92),(23,91),(24,120),(25,119),(26,118),(27,117),(28,116),(29,115),(30,114),(31,63),(32,62),(33,61),(34,90),(35,89),(36,88),(37,87),(38,86),(39,85),(40,84),(41,83),(42,82),(43,81),(44,80),(45,79),(46,78),(47,77),(48,76),(49,75),(50,74),(51,73),(52,72),(53,71),(54,70),(55,69),(56,68),(57,67),(58,66),(59,65),(60,64)]])

87 conjugacy classes

class 1 2A2B···2F2G2H2I2J 3 4A4B4C4D4E4F5A5B6A6B6C6D6E6F6G10A···10F10G···10N12A12B15A15B15C15D20A20B20C20D30A···30L30M···30AB60A···60H
order122···22222344444455666666610···1010···101212151515152020202030···3030···3060···60
size112···230303030222303030302222244442···24···444222244442···24···44···4

87 irreducible representations

dim1111112222222222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2S3D5D6D6D6D10D10D10D15D30D30D302+ 1+4D46D6D46D10D46D30
kernelD46D30D6011C2D4×D15D42D15C2×C157D4D4×C30D4×C10C6×D4C2×C20C5×D4C22×C10C2×C12C3×D4C22×C6C2×D4C2×C4D4C23C15C5C3C1
# reps12444112142284441681248

Matrix representation of D46D30 in GL4(𝔽61) generated by

14453816
1647455
38374716
24574514
,
14453816
1647455
004716
004514
,
343700
245300
29272724
340378
,
31362958
1430232
00441
001717
G:=sub<GL(4,GF(61))| [14,16,38,24,45,47,37,57,38,45,47,45,16,5,16,14],[14,16,0,0,45,47,0,0,38,45,47,45,16,5,16,14],[34,24,29,34,37,53,27,0,0,0,27,37,0,0,24,8],[31,14,0,0,36,30,0,0,29,2,44,17,58,32,1,17] >;

D46D30 in GAP, Magma, Sage, TeX

D_4\rtimes_6D_{30}
% in TeX

G:=Group("D4:6D30");
// GroupNames label

G:=SmallGroup(480,1171);
// by ID

G=gap.SmallGroup(480,1171);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,219,675,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^30=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽