metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6⋊6SD16, D12.16D4, (C2×C8)⋊17D6, (C2×Q8)⋊6D6, D6⋊C8⋊32C2, (C3×D4).9D4, C4.62(S3×D4), D6⋊3Q8⋊3C2, C12.47(C2×D4), (C6×Q8)⋊3C22, (C2×C24)⋊33C22, C6.57C22≀C2, (C2×SD16)⋊10S3, (C6×SD16)⋊20C2, (C2×D4).146D6, C2.D24⋊35C2, D4.8(C3⋊D4), C3⋊4(C22⋊SD16), C2.28(S3×SD16), C6.45(C2×SD16), D4⋊Dic3⋊33C2, C2.28(Q8⋊3D6), C6.78(C8⋊C22), C4⋊Dic3⋊20C22, (C2×Dic3).71D4, (C22×S3).91D4, (C6×D4).95C22, C22.266(S3×D4), C2.25(C23⋊2D6), (C2×C12).446C23, (C2×D12).120C22, (C2×S3×D4).6C2, (C2×C3⋊C8)⋊8C22, C4.42(C2×C3⋊D4), (C2×C6).358(C2×D4), (S3×C2×C4).47C22, (C2×Q8⋊2S3)⋊17C2, (C2×C4).535(C22×S3), SmallGroup(192,728)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊6SD16
G = < a,b,c,d | a6=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=a3b, bd=db, dcd=c3 >
Subgroups: 696 in 188 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C3⋊C8, C24, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×S3, C22×S3, C22×C6, C22⋊C8, D4⋊C4, C22⋊Q8, C2×SD16, C2×SD16, C22×D4, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, D6⋊C4, Q8⋊2S3, C2×C24, C3×SD16, S3×C2×C4, C2×D12, S3×D4, C2×C3⋊D4, C6×D4, C6×Q8, S3×C23, C22⋊SD16, D6⋊C8, C2.D24, D4⋊Dic3, C2×Q8⋊2S3, D6⋊3Q8, C6×SD16, C2×S3×D4, D6⋊6SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C3⋊D4, C22×S3, C22≀C2, C2×SD16, C8⋊C22, S3×D4, C2×C3⋊D4, C22⋊SD16, S3×SD16, Q8⋊3D6, C23⋊2D6, D6⋊6SD16
(1 24 47 28 13 33)(2 17 48 29 14 34)(3 18 41 30 15 35)(4 19 42 31 16 36)(5 20 43 32 9 37)(6 21 44 25 10 38)(7 22 45 26 11 39)(8 23 46 27 12 40)
(1 33)(2 48)(3 35)(4 42)(5 37)(6 44)(7 39)(8 46)(9 20)(11 22)(13 24)(15 18)(25 38)(26 45)(27 40)(28 47)(29 34)(30 41)(31 36)(32 43)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(17 19)(18 22)(21 23)(25 27)(26 30)(29 31)(34 36)(35 39)(38 40)(41 45)(42 48)(44 46)
G:=sub<Sym(48)| (1,24,47,28,13,33)(2,17,48,29,14,34)(3,18,41,30,15,35)(4,19,42,31,16,36)(5,20,43,32,9,37)(6,21,44,25,10,38)(7,22,45,26,11,39)(8,23,46,27,12,40), (1,33)(2,48)(3,35)(4,42)(5,37)(6,44)(7,39)(8,46)(9,20)(11,22)(13,24)(15,18)(25,38)(26,45)(27,40)(28,47)(29,34)(30,41)(31,36)(32,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,19)(18,22)(21,23)(25,27)(26,30)(29,31)(34,36)(35,39)(38,40)(41,45)(42,48)(44,46)>;
G:=Group( (1,24,47,28,13,33)(2,17,48,29,14,34)(3,18,41,30,15,35)(4,19,42,31,16,36)(5,20,43,32,9,37)(6,21,44,25,10,38)(7,22,45,26,11,39)(8,23,46,27,12,40), (1,33)(2,48)(3,35)(4,42)(5,37)(6,44)(7,39)(8,46)(9,20)(11,22)(13,24)(15,18)(25,38)(26,45)(27,40)(28,47)(29,34)(30,41)(31,36)(32,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,19)(18,22)(21,23)(25,27)(26,30)(29,31)(34,36)(35,39)(38,40)(41,45)(42,48)(44,46) );
G=PermutationGroup([[(1,24,47,28,13,33),(2,17,48,29,14,34),(3,18,41,30,15,35),(4,19,42,31,16,36),(5,20,43,32,9,37),(6,21,44,25,10,38),(7,22,45,26,11,39),(8,23,46,27,12,40)], [(1,33),(2,48),(3,35),(4,42),(5,37),(6,44),(7,39),(8,46),(9,20),(11,22),(13,24),(15,18),(25,38),(26,45),(27,40),(28,47),(29,34),(30,41),(31,36),(32,43)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(17,19),(18,22),(21,23),(25,27),(26,30),(29,31),(34,36),(35,39),(38,40),(41,45),(42,48),(44,46)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 6 | 6 | 12 | 12 | 2 | 2 | 2 | 8 | 12 | 24 | 2 | 2 | 2 | 8 | 8 | 4 | 4 | 12 | 12 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D4 | D4 | D6 | D6 | D6 | SD16 | C3⋊D4 | C8⋊C22 | S3×D4 | S3×D4 | S3×SD16 | Q8⋊3D6 |
kernel | D6⋊6SD16 | D6⋊C8 | C2.D24 | D4⋊Dic3 | C2×Q8⋊2S3 | D6⋊3Q8 | C6×SD16 | C2×S3×D4 | C2×SD16 | D12 | C2×Dic3 | C3×D4 | C22×S3 | C2×C8 | C2×D4 | C2×Q8 | D6 | D4 | C6 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 2 | 2 |
Matrix representation of D6⋊6SD16 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 67 | 67 | 0 | 0 |
0 | 0 | 6 | 67 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,72,72],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,67,6,0,0,0,0,67,67,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
D6⋊6SD16 in GAP, Magma, Sage, TeX
D_6\rtimes_6{\rm SD}_{16}
% in TeX
G:=Group("D6:6SD16");
// GroupNames label
G:=SmallGroup(192,728);
// by ID
G=gap.SmallGroup(192,728);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,184,851,438,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^3*b,b*d=d*b,d*c*d=c^3>;
// generators/relations