Copied to
clipboard

G = Dic6:2D4order 192 = 26·3

2nd semidirect product of Dic6 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic6:2D4, Dic3:4SD16, C4.82(S3xD4), D4:C4:9S3, C4:C4.131D6, C3:1(C4:SD16), (C2xD4).18D6, C6.D8:2C2, (C2xC8).113D6, Dic3:C8:10C2, C4.1(C4oD12), C12.2(C4oD4), C12:3D4.3C2, C12.101(C2xD4), C2.9(D8:S3), C2.10(S3xSD16), C6.21(C2xSD16), Dic6:C4:3C2, C6.13(C4:D4), C6.26(C8:C22), (C6xD4).23C22, C22.164(S3xD4), C2.16(Dic3:D4), (C2xC24).124C22, (C2xC12).202C23, (C2xDic3).136D4, (C2xD12).45C22, (C4xDic3).6C22, (C2xDic6).51C22, (C2xD4.S3):2C2, (C2xC24:C2):13C2, (C2xC3:C8).8C22, (C3xD4:C4):9C2, (C2xC6).215(C2xD4), (C3xC4:C4).7C22, (C2xC4).309(C22xS3), SmallGroup(192,321)

Series: Derived Chief Lower central Upper central

C1C2xC12 — Dic6:2D4
C1C3C6C12C2xC12C4xDic3C12:3D4 — Dic6:2D4
C3C6C2xC12 — Dic6:2D4
C1C22C2xC4D4:C4

Generators and relations for Dic6:2D4
 G = < a,b,c,d | a12=c4=d2=1, b2=a6, bab-1=dad=a-1, cac-1=a5, bc=cb, dbd=a3b, dcd=c-1 >

Subgroups: 440 in 128 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C4:C4, C4:C4, C2xC8, C2xC8, SD16, C2xD4, C2xD4, C2xQ8, C3:C8, C24, Dic6, Dic6, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, D4:C4, D4:C4, C4:C8, C4xQ8, C4:1D4, C2xSD16, C24:C2, C2xC3:C8, C4xDic3, C4xDic3, Dic3:C4, D4.S3, C3xC4:C4, C2xC24, C2xDic6, C2xD12, C2xC3:D4, C6xD4, C4:SD16, C6.D8, Dic3:C8, C3xD4:C4, Dic6:C4, C2xC24:C2, C2xD4.S3, C12:3D4, Dic6:2D4
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2xD4, C4oD4, C22xS3, C4:D4, C2xSD16, C8:C22, C4oD12, S3xD4, C4:SD16, Dic3:D4, D8:S3, S3xSD16, Dic6:2D4

Smallest permutation representation of Dic6:2D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 54 7 60)(2 53 8 59)(3 52 9 58)(4 51 10 57)(5 50 11 56)(6 49 12 55)(13 75 19 81)(14 74 20 80)(15 73 21 79)(16 84 22 78)(17 83 23 77)(18 82 24 76)(25 43 31 37)(26 42 32 48)(27 41 33 47)(28 40 34 46)(29 39 35 45)(30 38 36 44)(61 87 67 93)(62 86 68 92)(63 85 69 91)(64 96 70 90)(65 95 71 89)(66 94 72 88)
(1 88 35 17)(2 93 36 22)(3 86 25 15)(4 91 26 20)(5 96 27 13)(6 89 28 18)(7 94 29 23)(8 87 30 16)(9 92 31 21)(10 85 32 14)(11 90 33 19)(12 95 34 24)(37 79 58 62)(38 84 59 67)(39 77 60 72)(40 82 49 65)(41 75 50 70)(42 80 51 63)(43 73 52 68)(44 78 53 61)(45 83 54 66)(46 76 55 71)(47 81 56 64)(48 74 57 69)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 92)(14 91)(15 90)(16 89)(17 88)(18 87)(19 86)(20 85)(21 96)(22 95)(23 94)(24 93)(25 33)(26 32)(27 31)(28 30)(34 36)(37 38)(39 48)(40 47)(41 46)(42 45)(43 44)(49 56)(50 55)(51 54)(52 53)(57 60)(58 59)(61 73)(62 84)(63 83)(64 82)(65 81)(66 80)(67 79)(68 78)(69 77)(70 76)(71 75)(72 74)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,54,7,60)(2,53,8,59)(3,52,9,58)(4,51,10,57)(5,50,11,56)(6,49,12,55)(13,75,19,81)(14,74,20,80)(15,73,21,79)(16,84,22,78)(17,83,23,77)(18,82,24,76)(25,43,31,37)(26,42,32,48)(27,41,33,47)(28,40,34,46)(29,39,35,45)(30,38,36,44)(61,87,67,93)(62,86,68,92)(63,85,69,91)(64,96,70,90)(65,95,71,89)(66,94,72,88), (1,88,35,17)(2,93,36,22)(3,86,25,15)(4,91,26,20)(5,96,27,13)(6,89,28,18)(7,94,29,23)(8,87,30,16)(9,92,31,21)(10,85,32,14)(11,90,33,19)(12,95,34,24)(37,79,58,62)(38,84,59,67)(39,77,60,72)(40,82,49,65)(41,75,50,70)(42,80,51,63)(43,73,52,68)(44,78,53,61)(45,83,54,66)(46,76,55,71)(47,81,56,64)(48,74,57,69), (2,12)(3,11)(4,10)(5,9)(6,8)(13,92)(14,91)(15,90)(16,89)(17,88)(18,87)(19,86)(20,85)(21,96)(22,95)(23,94)(24,93)(25,33)(26,32)(27,31)(28,30)(34,36)(37,38)(39,48)(40,47)(41,46)(42,45)(43,44)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,73)(62,84)(63,83)(64,82)(65,81)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,54,7,60)(2,53,8,59)(3,52,9,58)(4,51,10,57)(5,50,11,56)(6,49,12,55)(13,75,19,81)(14,74,20,80)(15,73,21,79)(16,84,22,78)(17,83,23,77)(18,82,24,76)(25,43,31,37)(26,42,32,48)(27,41,33,47)(28,40,34,46)(29,39,35,45)(30,38,36,44)(61,87,67,93)(62,86,68,92)(63,85,69,91)(64,96,70,90)(65,95,71,89)(66,94,72,88), (1,88,35,17)(2,93,36,22)(3,86,25,15)(4,91,26,20)(5,96,27,13)(6,89,28,18)(7,94,29,23)(8,87,30,16)(9,92,31,21)(10,85,32,14)(11,90,33,19)(12,95,34,24)(37,79,58,62)(38,84,59,67)(39,77,60,72)(40,82,49,65)(41,75,50,70)(42,80,51,63)(43,73,52,68)(44,78,53,61)(45,83,54,66)(46,76,55,71)(47,81,56,64)(48,74,57,69), (2,12)(3,11)(4,10)(5,9)(6,8)(13,92)(14,91)(15,90)(16,89)(17,88)(18,87)(19,86)(20,85)(21,96)(22,95)(23,94)(24,93)(25,33)(26,32)(27,31)(28,30)(34,36)(37,38)(39,48)(40,47)(41,46)(42,45)(43,44)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,73)(62,84)(63,83)(64,82)(65,81)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,54,7,60),(2,53,8,59),(3,52,9,58),(4,51,10,57),(5,50,11,56),(6,49,12,55),(13,75,19,81),(14,74,20,80),(15,73,21,79),(16,84,22,78),(17,83,23,77),(18,82,24,76),(25,43,31,37),(26,42,32,48),(27,41,33,47),(28,40,34,46),(29,39,35,45),(30,38,36,44),(61,87,67,93),(62,86,68,92),(63,85,69,91),(64,96,70,90),(65,95,71,89),(66,94,72,88)], [(1,88,35,17),(2,93,36,22),(3,86,25,15),(4,91,26,20),(5,96,27,13),(6,89,28,18),(7,94,29,23),(8,87,30,16),(9,92,31,21),(10,85,32,14),(11,90,33,19),(12,95,34,24),(37,79,58,62),(38,84,59,67),(39,77,60,72),(40,82,49,65),(41,75,50,70),(42,80,51,63),(43,73,52,68),(44,78,53,61),(45,83,54,66),(46,76,55,71),(47,81,56,64),(48,74,57,69)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,92),(14,91),(15,90),(16,89),(17,88),(18,87),(19,86),(20,85),(21,96),(22,95),(23,94),(24,93),(25,33),(26,32),(27,31),(28,30),(34,36),(37,38),(39,48),(40,47),(41,46),(42,45),(43,44),(49,56),(50,55),(51,54),(52,53),(57,60),(58,59),(61,73),(62,84),(63,83),(64,82),(65,81),(66,80),(67,79),(68,78),(69,77),(70,76),(71,75),(72,74)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222234444444446666688881212121224242424
size111182422244661212122228844121244884444

33 irreducible representations

dim1111111122222222244444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6SD16C4oD4C4oD12C8:C22S3xD4S3xD4D8:S3S3xSD16
kernelDic6:2D4C6.D8Dic3:C8C3xD4:C4Dic6:C4C2xC24:C2C2xD4.S3C12:3D4D4:C4Dic6C2xDic3C4:C4C2xC8C2xD4Dic3C12C4C6C4C22C2C2
# reps1111111112211142411122

Matrix representation of Dic6:2D4 in GL4(F73) generated by

0100
72000
00172
0010
,
676700
67600
001466
00759
,
1000
0100
006043
003013
,
1000
07200
0001
0010
G:=sub<GL(4,GF(73))| [0,72,0,0,1,0,0,0,0,0,1,1,0,0,72,0],[67,67,0,0,67,6,0,0,0,0,14,7,0,0,66,59],[1,0,0,0,0,1,0,0,0,0,60,30,0,0,43,13],[1,0,0,0,0,72,0,0,0,0,0,1,0,0,1,0] >;

Dic6:2D4 in GAP, Magma, Sage, TeX

{\rm Dic}_6\rtimes_2D_4
% in TeX

G:=Group("Dic6:2D4");
// GroupNames label

G:=SmallGroup(192,321);
// by ID

G=gap.SmallGroup(192,321);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,253,135,268,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^4=d^2=1,b^2=a^6,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a^5,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<