Copied to
clipboard

G = C20⋊SD16order 320 = 26·5

1st semidirect product of C20 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C201SD16, D20.18D4, C42.32D10, C4⋊C88D5, C43(C40⋊C2), C4.129(D4×D5), C202Q811C2, (C4×D20).10C2, C20.338(C2×D4), (C2×C8).128D10, (C2×C4).131D20, (C2×C20).120D4, C52(D4.D4), (C4×C20).67C22, C10.10(C2×SD16), C20.327(C4○D4), C20.44D412C2, C2.10(C4⋊D20), C10.37(C4⋊D4), (C2×C40).138C22, (C2×C20).751C23, C4.43(Q82D5), C22.114(C2×D20), C2.17(C8.D10), (C2×D20).200C22, C10.14(C8.C22), C4⋊Dic5.272C22, (C2×Dic10).16C22, (C5×C4⋊C8)⋊10C2, (C2×C40⋊C2).5C2, C2.13(C2×C40⋊C2), (C2×C10).134(C2×D4), (C2×C4).696(C22×D5), SmallGroup(320,468)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C20⋊SD16
C1C5C10C20C2×C20C2×D20C4×D20 — C20⋊SD16
C5C10C2×C20 — C20⋊SD16
C1C22C42C4⋊C8

Generators and relations for C20⋊SD16
 G = < a,b,c | a20=b8=c2=1, bab-1=a11, cac=a9, cbc=b3 >

Subgroups: 566 in 120 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Dic5, C20, C20, C20, D10, C2×C10, Q8⋊C4, C4⋊C8, C4×D4, C4⋊Q8, C2×SD16, C40, Dic10, C4×D5, D20, D20, C2×Dic5, C2×C20, C22×D5, D4.D4, C40⋊C2, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C4×C20, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, C20.44D4, C5×C4⋊C8, C202Q8, C4×D20, C2×C40⋊C2, C20⋊SD16
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C4⋊D4, C2×SD16, C8.C22, D20, C22×D5, D4.D4, C40⋊C2, C2×D20, D4×D5, Q82D5, C4⋊D20, C2×C40⋊C2, C8.D10, C20⋊SD16

Smallest permutation representation of C20⋊SD16
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 61 46 137 93 117 154 32)(2 72 47 128 94 108 155 23)(3 63 48 139 95 119 156 34)(4 74 49 130 96 110 157 25)(5 65 50 121 97 101 158 36)(6 76 51 132 98 112 159 27)(7 67 52 123 99 103 160 38)(8 78 53 134 100 114 141 29)(9 69 54 125 81 105 142 40)(10 80 55 136 82 116 143 31)(11 71 56 127 83 107 144 22)(12 62 57 138 84 118 145 33)(13 73 58 129 85 109 146 24)(14 64 59 140 86 120 147 35)(15 75 60 131 87 111 148 26)(16 66 41 122 88 102 149 37)(17 77 42 133 89 113 150 28)(18 68 43 124 90 104 151 39)(19 79 44 135 91 115 152 30)(20 70 45 126 92 106 153 21)
(2 10)(3 19)(4 8)(5 17)(7 15)(9 13)(12 20)(14 18)(21 118)(22 107)(23 116)(24 105)(25 114)(26 103)(27 112)(28 101)(29 110)(30 119)(31 108)(32 117)(33 106)(34 115)(35 104)(36 113)(37 102)(38 111)(39 120)(40 109)(41 149)(42 158)(43 147)(44 156)(45 145)(46 154)(47 143)(48 152)(49 141)(50 150)(51 159)(52 148)(53 157)(54 146)(55 155)(56 144)(57 153)(58 142)(59 151)(60 160)(61 137)(62 126)(63 135)(64 124)(65 133)(66 122)(67 131)(68 140)(69 129)(70 138)(71 127)(72 136)(73 125)(74 134)(75 123)(76 132)(77 121)(78 130)(79 139)(80 128)(81 85)(82 94)(84 92)(86 90)(87 99)(89 97)(91 95)(96 100)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61,46,137,93,117,154,32)(2,72,47,128,94,108,155,23)(3,63,48,139,95,119,156,34)(4,74,49,130,96,110,157,25)(5,65,50,121,97,101,158,36)(6,76,51,132,98,112,159,27)(7,67,52,123,99,103,160,38)(8,78,53,134,100,114,141,29)(9,69,54,125,81,105,142,40)(10,80,55,136,82,116,143,31)(11,71,56,127,83,107,144,22)(12,62,57,138,84,118,145,33)(13,73,58,129,85,109,146,24)(14,64,59,140,86,120,147,35)(15,75,60,131,87,111,148,26)(16,66,41,122,88,102,149,37)(17,77,42,133,89,113,150,28)(18,68,43,124,90,104,151,39)(19,79,44,135,91,115,152,30)(20,70,45,126,92,106,153,21), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,118)(22,107)(23,116)(24,105)(25,114)(26,103)(27,112)(28,101)(29,110)(30,119)(31,108)(32,117)(33,106)(34,115)(35,104)(36,113)(37,102)(38,111)(39,120)(40,109)(41,149)(42,158)(43,147)(44,156)(45,145)(46,154)(47,143)(48,152)(49,141)(50,150)(51,159)(52,148)(53,157)(54,146)(55,155)(56,144)(57,153)(58,142)(59,151)(60,160)(61,137)(62,126)(63,135)(64,124)(65,133)(66,122)(67,131)(68,140)(69,129)(70,138)(71,127)(72,136)(73,125)(74,134)(75,123)(76,132)(77,121)(78,130)(79,139)(80,128)(81,85)(82,94)(84,92)(86,90)(87,99)(89,97)(91,95)(96,100)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,61,46,137,93,117,154,32)(2,72,47,128,94,108,155,23)(3,63,48,139,95,119,156,34)(4,74,49,130,96,110,157,25)(5,65,50,121,97,101,158,36)(6,76,51,132,98,112,159,27)(7,67,52,123,99,103,160,38)(8,78,53,134,100,114,141,29)(9,69,54,125,81,105,142,40)(10,80,55,136,82,116,143,31)(11,71,56,127,83,107,144,22)(12,62,57,138,84,118,145,33)(13,73,58,129,85,109,146,24)(14,64,59,140,86,120,147,35)(15,75,60,131,87,111,148,26)(16,66,41,122,88,102,149,37)(17,77,42,133,89,113,150,28)(18,68,43,124,90,104,151,39)(19,79,44,135,91,115,152,30)(20,70,45,126,92,106,153,21), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,118)(22,107)(23,116)(24,105)(25,114)(26,103)(27,112)(28,101)(29,110)(30,119)(31,108)(32,117)(33,106)(34,115)(35,104)(36,113)(37,102)(38,111)(39,120)(40,109)(41,149)(42,158)(43,147)(44,156)(45,145)(46,154)(47,143)(48,152)(49,141)(50,150)(51,159)(52,148)(53,157)(54,146)(55,155)(56,144)(57,153)(58,142)(59,151)(60,160)(61,137)(62,126)(63,135)(64,124)(65,133)(66,122)(67,131)(68,140)(69,129)(70,138)(71,127)(72,136)(73,125)(74,134)(75,123)(76,132)(77,121)(78,130)(79,139)(80,128)(81,85)(82,94)(84,92)(86,90)(87,99)(89,97)(91,95)(96,100) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,61,46,137,93,117,154,32),(2,72,47,128,94,108,155,23),(3,63,48,139,95,119,156,34),(4,74,49,130,96,110,157,25),(5,65,50,121,97,101,158,36),(6,76,51,132,98,112,159,27),(7,67,52,123,99,103,160,38),(8,78,53,134,100,114,141,29),(9,69,54,125,81,105,142,40),(10,80,55,136,82,116,143,31),(11,71,56,127,83,107,144,22),(12,62,57,138,84,118,145,33),(13,73,58,129,85,109,146,24),(14,64,59,140,86,120,147,35),(15,75,60,131,87,111,148,26),(16,66,41,122,88,102,149,37),(17,77,42,133,89,113,150,28),(18,68,43,124,90,104,151,39),(19,79,44,135,91,115,152,30),(20,70,45,126,92,106,153,21)], [(2,10),(3,19),(4,8),(5,17),(7,15),(9,13),(12,20),(14,18),(21,118),(22,107),(23,116),(24,105),(25,114),(26,103),(27,112),(28,101),(29,110),(30,119),(31,108),(32,117),(33,106),(34,115),(35,104),(36,113),(37,102),(38,111),(39,120),(40,109),(41,149),(42,158),(43,147),(44,156),(45,145),(46,154),(47,143),(48,152),(49,141),(50,150),(51,159),(52,148),(53,157),(54,146),(55,155),(56,144),(57,153),(58,142),(59,151),(60,160),(61,137),(62,126),(63,135),(64,124),(65,133),(66,122),(67,131),(68,140),(69,129),(70,138),(71,127),(72,136),(73,125),(74,134),(75,123),(76,132),(77,121),(78,130),(79,139),(80,128),(81,85),(82,94),(84,92),(86,90),(87,99),(89,97),(91,95),(96,100)]])

59 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F20A···20H20I···20P40A···40P
order12222244444444455888810···1020···2020···2040···40
size1111202022224202040402244442···22···24···44···4

59 irreducible representations

dim1111112222222224444
type++++++++++++-++-
imageC1C2C2C2C2C2D4D4D5SD16C4○D4D10D10D20C40⋊C2C8.C22D4×D5Q82D5C8.D10
kernelC20⋊SD16C20.44D4C5×C4⋊C8C202Q8C4×D20C2×C40⋊C2D20C2×C20C4⋊C8C20C20C42C2×C8C2×C4C4C10C4C4C2
# reps12111222242248161224

Matrix representation of C20⋊SD16 in GL6(𝔽41)

100000
010000
00344000
001000
00004024
0000171
,
36190000
34350000
0040000
0004000
000001
000010
,
100000
28400000
001000
00344000
000010
000001

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,1,0,0,0,0,40,0,0,0,0,0,0,0,40,17,0,0,0,0,24,1],[36,34,0,0,0,0,19,35,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,28,0,0,0,0,0,40,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C20⋊SD16 in GAP, Magma, Sage, TeX

C_{20}\rtimes {\rm SD}_{16}
% in TeX

G:=Group("C20:SD16");
// GroupNames label

G:=SmallGroup(320,468);
// by ID

G=gap.SmallGroup(320,468);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,254,219,58,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^11,c*a*c=a^9,c*b*c=b^3>;
// generators/relations

׿
×
𝔽