Copied to
clipboard

G = C24.53D6order 192 = 26·3

42nd non-split extension by C24 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.53D6, C6.912+ 1+4, (C3×D4)⋊17D4, D48(C3⋊D4), D63D441C2, C310(D45D4), D6⋊C473C22, (D4×Dic3)⋊39C2, (C2×D4).231D6, C12.253(C2×D4), (C22×D4)⋊15S3, C244S314C2, (C2×C6).301C24, C4⋊Dic345C22, (C22×C4).289D6, C6.148(C22×D4), C23.14D642C2, C23.12D629C2, C12.48D437C2, C2.94(D46D6), C226(D42S3), (C2×C12).546C23, Dic3⋊C439C22, (C2×Dic6)⋊42C22, (C4×Dic3)⋊43C22, (C6×D4).312C22, (C23×C6).80C22, C23.23D630C2, C6.D440C22, C22.314(S3×C23), C23.246(C22×S3), (C22×C6).235C23, (C22×S3).132C23, (C22×C12).278C22, (C2×Dic3).286C23, (C22×Dic3)⋊35C22, (D4×C2×C6)⋊8C2, (C4×C3⋊D4)⋊26C2, (S3×C2×C4)⋊32C22, (C2×C6).74(C2×D4), C4.68(C2×C3⋊D4), (C2×C6)⋊15(C4○D4), C6.107(C2×C4○D4), (C2×D42S3)⋊27C2, C22.3(C2×C3⋊D4), C2.71(C2×D42S3), (C2×C3⋊D4)⋊29C22, C2.21(C22×C3⋊D4), (C2×C6.D4)⋊31C2, (C2×C4).239(C22×S3), SmallGroup(192,1365)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24.53D6
C1C3C6C2×C6C22×S3S3×C2×C4C2×D42S3 — C24.53D6
C3C2×C6 — C24.53D6
C1C22C22×D4

Generators and relations for C24.53D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=d, ab=ba, ac=ca, eae-1=ad=da, af=fa, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >

Subgroups: 824 in 334 conjugacy classes, 115 normal (43 characteristic)
C1, C2 [×3], C2 [×9], C3, C4 [×2], C4 [×8], C22, C22 [×6], C22 [×23], S3, C6 [×3], C6 [×8], C2×C4 [×2], C2×C4 [×17], D4 [×4], D4 [×14], Q8 [×2], C23, C23 [×4], C23 [×11], Dic3 [×7], C12 [×2], C12, D6 [×3], C2×C6, C2×C6 [×6], C2×C6 [×20], C42, C22⋊C4 [×12], C4⋊C4 [×4], C22×C4, C22×C4 [×5], C2×D4 [×2], C2×D4 [×2], C2×D4 [×9], C2×Q8, C4○D4 [×4], C24 [×2], Dic6 [×2], C4×S3 [×2], C2×Dic3 [×3], C2×Dic3 [×4], C2×Dic3 [×6], C3⋊D4 [×8], C2×C12 [×2], C2×C12 [×2], C3×D4 [×4], C3×D4 [×6], C22×S3, C22×C6, C22×C6 [×4], C22×C6 [×10], C2×C22⋊C4 [×2], C4×D4 [×2], C22≀C2 [×2], C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4, C22×D4, C2×C4○D4, C4×Dic3, Dic3⋊C4, Dic3⋊C4 [×2], C4⋊Dic3, D6⋊C4, C6.D4, C6.D4 [×10], C2×Dic6, S3×C2×C4, D42S3 [×4], C22×Dic3 [×4], C2×C3⋊D4, C2×C3⋊D4 [×4], C22×C12, C6×D4 [×2], C6×D4 [×2], C6×D4 [×4], C23×C6 [×2], D45D4, C12.48D4, C4×C3⋊D4, D4×Dic3, C23.23D6 [×2], C23.12D6, D63D4, C23.14D6 [×2], C2×C6.D4 [×2], C244S3 [×2], C2×D42S3, D4×C2×C6, C24.53D6
Quotients: C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C4○D4 [×2], C24, C3⋊D4 [×4], C22×S3 [×7], C22×D4, C2×C4○D4, 2+ 1+4, D42S3 [×2], C2×C3⋊D4 [×6], S3×C23, D45D4, C2×D42S3, D46D6, C22×C3⋊D4, C24.53D6

Smallest permutation representation of C24.53D6
On 48 points
Generators in S48
(1 21)(2 16)(3 23)(4 18)(5 13)(6 20)(7 15)(8 22)(9 17)(10 24)(11 19)(12 14)(25 42)(26 37)(27 44)(28 39)(29 46)(30 41)(31 48)(32 43)(33 38)(34 45)(35 40)(36 47)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 37)(33 38)(34 39)(35 40)(36 41)
(1 21)(2 22)(3 23)(4 24)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)(25 48)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 47 7 41)(2 40 8 46)(3 45 9 39)(4 38 10 44)(5 43 11 37)(6 48 12 42)(13 32 19 26)(14 25 20 31)(15 30 21 36)(16 35 22 29)(17 28 23 34)(18 33 24 27)

G:=sub<Sym(48)| (1,21)(2,16)(3,23)(4,18)(5,13)(6,20)(7,15)(8,22)(9,17)(10,24)(11,19)(12,14)(25,42)(26,37)(27,44)(28,39)(29,46)(30,41)(31,48)(32,43)(33,38)(34,45)(35,40)(36,47), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41), (1,21)(2,22)(3,23)(4,24)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)(25,48)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,7,41)(2,40,8,46)(3,45,9,39)(4,38,10,44)(5,43,11,37)(6,48,12,42)(13,32,19,26)(14,25,20,31)(15,30,21,36)(16,35,22,29)(17,28,23,34)(18,33,24,27)>;

G:=Group( (1,21)(2,16)(3,23)(4,18)(5,13)(6,20)(7,15)(8,22)(9,17)(10,24)(11,19)(12,14)(25,42)(26,37)(27,44)(28,39)(29,46)(30,41)(31,48)(32,43)(33,38)(34,45)(35,40)(36,47), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41), (1,21)(2,22)(3,23)(4,24)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)(25,48)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,7,41)(2,40,8,46)(3,45,9,39)(4,38,10,44)(5,43,11,37)(6,48,12,42)(13,32,19,26)(14,25,20,31)(15,30,21,36)(16,35,22,29)(17,28,23,34)(18,33,24,27) );

G=PermutationGroup([(1,21),(2,16),(3,23),(4,18),(5,13),(6,20),(7,15),(8,22),(9,17),(10,24),(11,19),(12,14),(25,42),(26,37),(27,44),(28,39),(29,46),(30,41),(31,48),(32,43),(33,38),(34,45),(35,40),(36,47)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,37),(33,38),(34,39),(35,40),(36,41)], [(1,21),(2,22),(3,23),(4,24),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20),(25,48),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,47,7,41),(2,40,8,46),(3,45,9,39),(4,38,10,44),(5,43,11,37),(6,48,12,42),(13,32,19,26),(14,25,20,31),(15,30,21,36),(16,35,22,29),(17,28,23,34),(18,33,24,27)])

45 conjugacy classes

class 1 2A2B2C2D···2I2J2K2L 3 4A4B4C4D4E4F4G4H···4L6A···6G6H···6O12A12B12C12D
order12222···2222344444444···46···66···612121212
size11112···244122224666612···122···24···44444

45 irreducible representations

dim1111111111112222222444
type++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6C4○D4C3⋊D42+ 1+4D42S3D46D6
kernelC24.53D6C12.48D4C4×C3⋊D4D4×Dic3C23.23D6C23.12D6D63D4C23.14D6C2×C6.D4C244S3C2×D42S3D4×C2×C6C22×D4C3×D4C22×C4C2×D4C24C2×C6D4C6C22C2
# reps1111211222111414248122

Matrix representation of C24.53D6 in GL4(𝔽13) generated by

1000
0100
0010
001112
,
1000
01200
00120
00012
,
12000
01200
0010
0001
,
1000
0100
00120
00012
,
10000
0400
0011
001112
,
0900
3000
0080
0008
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,1,11,0,0,0,12],[1,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[10,0,0,0,0,4,0,0,0,0,1,11,0,0,1,12],[0,3,0,0,9,0,0,0,0,0,8,0,0,0,0,8] >;

C24.53D6 in GAP, Magma, Sage, TeX

C_2^4._{53}D_6
% in TeX

G:=Group("C2^4.53D6");
// GroupNames label

G:=SmallGroup(192,1365);
// by ID

G=gap.SmallGroup(192,1365);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,387,675,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations

׿
×
𝔽