metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C72.1C4, C36.34D4, C4.18D36, C8.1Dic9, C12.53D12, C24.1Dic3, C22.2Dic18, (C2×C8).5D9, (C2×C72).7C2, C18.4(C4⋊C4), (C2×C18).3Q8, C9⋊1(C8.C4), C36.35(C2×C4), (C2×C24).14S3, (C2×C4).72D18, C4.6(C2×Dic9), C3.(C8.Dic3), (C2×C12).392D6, C6.7(C4⋊Dic3), C2.3(C4⋊Dic9), (C2×C6).12Dic6, C4.Dic9.1C2, (C2×C36).95C22, C12.41(C2×Dic3), SmallGroup(288,20)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C8.Dic9
G = < a,b,c | a8=1, b18=a4, c2=b9, ab=ba, cac-1=a3, cbc-1=b17 >
(1 64 28 55 19 46 10 37)(2 65 29 56 20 47 11 38)(3 66 30 57 21 48 12 39)(4 67 31 58 22 49 13 40)(5 68 32 59 23 50 14 41)(6 69 33 60 24 51 15 42)(7 70 34 61 25 52 16 43)(8 71 35 62 26 53 17 44)(9 72 36 63 27 54 18 45)(73 114 82 123 91 132 100 141)(74 115 83 124 92 133 101 142)(75 116 84 125 93 134 102 143)(76 117 85 126 94 135 103 144)(77 118 86 127 95 136 104 109)(78 119 87 128 96 137 105 110)(79 120 88 129 97 138 106 111)(80 121 89 130 98 139 107 112)(81 122 90 131 99 140 108 113)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 85 10 94 19 103 28 76)(2 102 11 75 20 84 29 93)(3 83 12 92 21 101 30 74)(4 100 13 73 22 82 31 91)(5 81 14 90 23 99 32 108)(6 98 15 107 24 80 33 89)(7 79 16 88 25 97 34 106)(8 96 17 105 26 78 35 87)(9 77 18 86 27 95 36 104)(37 144 46 117 55 126 64 135)(38 125 47 134 56 143 65 116)(39 142 48 115 57 124 66 133)(40 123 49 132 58 141 67 114)(41 140 50 113 59 122 68 131)(42 121 51 130 60 139 69 112)(43 138 52 111 61 120 70 129)(44 119 53 128 62 137 71 110)(45 136 54 109 63 118 72 127)
G:=sub<Sym(144)| (1,64,28,55,19,46,10,37)(2,65,29,56,20,47,11,38)(3,66,30,57,21,48,12,39)(4,67,31,58,22,49,13,40)(5,68,32,59,23,50,14,41)(6,69,33,60,24,51,15,42)(7,70,34,61,25,52,16,43)(8,71,35,62,26,53,17,44)(9,72,36,63,27,54,18,45)(73,114,82,123,91,132,100,141)(74,115,83,124,92,133,101,142)(75,116,84,125,93,134,102,143)(76,117,85,126,94,135,103,144)(77,118,86,127,95,136,104,109)(78,119,87,128,96,137,105,110)(79,120,88,129,97,138,106,111)(80,121,89,130,98,139,107,112)(81,122,90,131,99,140,108,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,85,10,94,19,103,28,76)(2,102,11,75,20,84,29,93)(3,83,12,92,21,101,30,74)(4,100,13,73,22,82,31,91)(5,81,14,90,23,99,32,108)(6,98,15,107,24,80,33,89)(7,79,16,88,25,97,34,106)(8,96,17,105,26,78,35,87)(9,77,18,86,27,95,36,104)(37,144,46,117,55,126,64,135)(38,125,47,134,56,143,65,116)(39,142,48,115,57,124,66,133)(40,123,49,132,58,141,67,114)(41,140,50,113,59,122,68,131)(42,121,51,130,60,139,69,112)(43,138,52,111,61,120,70,129)(44,119,53,128,62,137,71,110)(45,136,54,109,63,118,72,127)>;
G:=Group( (1,64,28,55,19,46,10,37)(2,65,29,56,20,47,11,38)(3,66,30,57,21,48,12,39)(4,67,31,58,22,49,13,40)(5,68,32,59,23,50,14,41)(6,69,33,60,24,51,15,42)(7,70,34,61,25,52,16,43)(8,71,35,62,26,53,17,44)(9,72,36,63,27,54,18,45)(73,114,82,123,91,132,100,141)(74,115,83,124,92,133,101,142)(75,116,84,125,93,134,102,143)(76,117,85,126,94,135,103,144)(77,118,86,127,95,136,104,109)(78,119,87,128,96,137,105,110)(79,120,88,129,97,138,106,111)(80,121,89,130,98,139,107,112)(81,122,90,131,99,140,108,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,85,10,94,19,103,28,76)(2,102,11,75,20,84,29,93)(3,83,12,92,21,101,30,74)(4,100,13,73,22,82,31,91)(5,81,14,90,23,99,32,108)(6,98,15,107,24,80,33,89)(7,79,16,88,25,97,34,106)(8,96,17,105,26,78,35,87)(9,77,18,86,27,95,36,104)(37,144,46,117,55,126,64,135)(38,125,47,134,56,143,65,116)(39,142,48,115,57,124,66,133)(40,123,49,132,58,141,67,114)(41,140,50,113,59,122,68,131)(42,121,51,130,60,139,69,112)(43,138,52,111,61,120,70,129)(44,119,53,128,62,137,71,110)(45,136,54,109,63,118,72,127) );
G=PermutationGroup([(1,64,28,55,19,46,10,37),(2,65,29,56,20,47,11,38),(3,66,30,57,21,48,12,39),(4,67,31,58,22,49,13,40),(5,68,32,59,23,50,14,41),(6,69,33,60,24,51,15,42),(7,70,34,61,25,52,16,43),(8,71,35,62,26,53,17,44),(9,72,36,63,27,54,18,45),(73,114,82,123,91,132,100,141),(74,115,83,124,92,133,101,142),(75,116,84,125,93,134,102,143),(76,117,85,126,94,135,103,144),(77,118,86,127,95,136,104,109),(78,119,87,128,96,137,105,110),(79,120,88,129,97,138,106,111),(80,121,89,130,98,139,107,112),(81,122,90,131,99,140,108,113)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,85,10,94,19,103,28,76),(2,102,11,75,20,84,29,93),(3,83,12,92,21,101,30,74),(4,100,13,73,22,82,31,91),(5,81,14,90,23,99,32,108),(6,98,15,107,24,80,33,89),(7,79,16,88,25,97,34,106),(8,96,17,105,26,78,35,87),(9,77,18,86,27,95,36,104),(37,144,46,117,55,126,64,135),(38,125,47,134,56,143,65,116),(39,142,48,115,57,124,66,133),(40,123,49,132,58,141,67,114),(41,140,50,113,59,122,68,131),(42,121,51,130,60,139,69,112),(43,138,52,111,61,120,70,129),(44,119,53,128,62,137,71,110),(45,136,54,109,63,118,72,127)])
78 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 9A | 9B | 9C | 12A | 12B | 12C | 12D | 18A | ··· | 18I | 24A | ··· | 24H | 36A | ··· | 36L | 72A | ··· | 72X |
order | 1 | 2 | 2 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 24 | ··· | 24 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 36 | 36 | 36 | 36 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
78 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | - | - | + | + | + | - | - | + | + | - | ||||
image | C1 | C2 | C2 | C4 | S3 | D4 | Q8 | Dic3 | D6 | D9 | D12 | Dic6 | C8.C4 | Dic9 | D18 | D36 | Dic18 | C8.Dic3 | C8.Dic9 |
kernel | C8.Dic9 | C4.Dic9 | C2×C72 | C72 | C2×C24 | C36 | C2×C18 | C24 | C2×C12 | C2×C8 | C12 | C2×C6 | C9 | C8 | C2×C4 | C4 | C22 | C3 | C1 |
# reps | 1 | 2 | 1 | 4 | 1 | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 4 | 6 | 3 | 6 | 6 | 8 | 24 |
Matrix representation of C8.Dic9 ►in GL2(𝔽73) generated by
51 | 0 |
0 | 10 |
54 | 0 |
0 | 50 |
0 | 1 |
27 | 0 |
G:=sub<GL(2,GF(73))| [51,0,0,10],[54,0,0,50],[0,27,1,0] >;
C8.Dic9 in GAP, Magma, Sage, TeX
C_8.{\rm Dic}_9
% in TeX
G:=Group("C8.Dic9");
// GroupNames label
G:=SmallGroup(288,20);
// by ID
G=gap.SmallGroup(288,20);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,141,64,100,675,80,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c|a^8=1,b^18=a^4,c^2=b^9,a*b=b*a,c*a*c^-1=a^3,c*b*c^-1=b^17>;
// generators/relations