Copied to
clipboard

?

G = C10.322+ (1+4)order 320 = 26·5

32nd non-split extension by C10 of 2+ (1+4) acting via 2+ (1+4)/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.322+ (1+4), C10.682- (1+4), C4⋊D45D5, C4⋊C4.89D10, (C2×Dic5)⋊9D4, C207D443C2, C22.2(D4×D5), (C2×D4).89D10, C22⋊C4.4D10, D10⋊D416C2, D10⋊Q813C2, Dic5⋊D48C2, Dic5.85(C2×D4), C10.60(C22×D4), C23.8(C22×D5), (C2×C20).172C23, (C2×C10).141C24, (C2×D20).32C22, (C22×C4).217D10, C4⋊Dic5.44C22, C2.34(D46D10), (D4×C10).115C22, (C22×C10).12C23, (C22×D5).60C23, C22.162(C23×D5), Dic5.14D415C2, C23.D5.19C22, D10⋊C4.69C22, (C22×C20).310C22, C52(C22.31C24), (C2×Dic5).234C23, C2.26(D4.10D10), (C2×Dic10).157C22, C10.D4.158C22, (C22×Dic5).102C22, C2.33(C2×D4×D5), (C5×C4⋊D4)⋊6C2, (C2×C10).4(C2×D4), (C2×D42D5)⋊9C2, (C2×C4×D5).89C22, (C2×C4).35(C22×D5), (C2×C10.D4)⋊28C2, (C5×C4⋊C4).137C22, (C2×C5⋊D4).24C22, (C5×C22⋊C4).6C22, SmallGroup(320,1269)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.322+ (1+4)
C1C5C10C2×C10C2×Dic5C22×Dic5C2×D42D5 — C10.322+ (1+4)
C5C2×C10 — C10.322+ (1+4)

Subgroups: 1102 in 294 conjugacy classes, 103 normal (31 characteristic)
C1, C2 [×3], C2 [×6], C4 [×12], C22, C22 [×2], C22 [×14], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×20], D4 [×16], Q8 [×4], C23, C23 [×2], C23 [×2], D5 [×2], C10 [×3], C10 [×4], C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×7], C22×C4, C22×C4 [×6], C2×D4, C2×D4 [×2], C2×D4 [×7], C2×Q8 [×2], C4○D4 [×8], Dic5 [×4], Dic5 [×4], C20 [×4], D10 [×6], C2×C10, C2×C10 [×2], C2×C10 [×8], C2×C4⋊C4, C4⋊D4, C4⋊D4 [×7], C22⋊Q8 [×4], C2×C4○D4 [×2], Dic10 [×4], C4×D5 [×4], D20, C2×Dic5 [×10], C2×Dic5 [×5], C5⋊D4 [×10], C2×C20 [×2], C2×C20 [×2], C2×C20, C5×D4 [×5], C22×D5 [×2], C22×C10, C22×C10 [×2], C22.31C24, C10.D4 [×6], C4⋊Dic5, D10⋊C4 [×4], C23.D5 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×C4×D5 [×2], C2×D20, D42D5 [×8], C22×Dic5 [×2], C22×Dic5 [×2], C2×C5⋊D4 [×6], C22×C20, D4×C10, D4×C10 [×2], Dic5.14D4 [×2], D10⋊D4 [×2], D10⋊Q8 [×2], C2×C10.D4, C207D4, Dic5⋊D4 [×4], C5×C4⋊D4, C2×D42D5 [×2], C10.322+ (1+4)

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.31C24, D4×D5 [×2], C23×D5, C2×D4×D5, D46D10, D4.10D10, C10.322+ (1+4)

Generators and relations
 G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=b2, ab=ba, cac-1=eae=a-1, ad=da, cbc-1=a5b-1, dbd-1=a5b, be=eb, dcd-1=ece=a5c, ede=a5b2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 132 30 150)(2 133 21 141)(3 134 22 142)(4 135 23 143)(5 136 24 144)(6 137 25 145)(7 138 26 146)(8 139 27 147)(9 140 28 148)(10 131 29 149)(11 37 157 45)(12 38 158 46)(13 39 159 47)(14 40 160 48)(15 31 151 49)(16 32 152 50)(17 33 153 41)(18 34 154 42)(19 35 155 43)(20 36 156 44)(51 91 69 109)(52 92 70 110)(53 93 61 101)(54 94 62 102)(55 95 63 103)(56 96 64 104)(57 97 65 105)(58 98 66 106)(59 99 67 107)(60 100 68 108)(71 111 89 129)(72 112 90 130)(73 113 81 121)(74 114 82 122)(75 115 83 123)(76 116 84 124)(77 117 85 125)(78 118 86 126)(79 119 87 127)(80 120 88 128)
(1 45 6 50)(2 44 7 49)(3 43 8 48)(4 42 9 47)(5 41 10 46)(11 150 16 145)(12 149 17 144)(13 148 18 143)(14 147 19 142)(15 146 20 141)(21 36 26 31)(22 35 27 40)(23 34 28 39)(24 33 29 38)(25 32 30 37)(51 73 56 78)(52 72 57 77)(53 71 58 76)(54 80 59 75)(55 79 60 74)(61 89 66 84)(62 88 67 83)(63 87 68 82)(64 86 69 81)(65 85 70 90)(91 126 96 121)(92 125 97 130)(93 124 98 129)(94 123 99 128)(95 122 100 127)(101 116 106 111)(102 115 107 120)(103 114 108 119)(104 113 109 118)(105 112 110 117)(131 153 136 158)(132 152 137 157)(133 151 138 156)(134 160 139 155)(135 159 140 154)
(1 125 30 117)(2 126 21 118)(3 127 22 119)(4 128 23 120)(5 129 24 111)(6 130 25 112)(7 121 26 113)(8 122 27 114)(9 123 28 115)(10 124 29 116)(11 65 157 57)(12 66 158 58)(13 67 159 59)(14 68 160 60)(15 69 151 51)(16 70 152 52)(17 61 153 53)(18 62 154 54)(19 63 155 55)(20 64 156 56)(31 104 49 96)(32 105 50 97)(33 106 41 98)(34 107 42 99)(35 108 43 100)(36 109 44 91)(37 110 45 92)(38 101 46 93)(39 102 47 94)(40 103 48 95)(71 149 89 131)(72 150 90 132)(73 141 81 133)(74 142 82 134)(75 143 83 135)(76 144 84 136)(77 145 85 137)(78 146 86 138)(79 147 87 139)(80 148 88 140)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 152)(12 151)(13 160)(14 159)(15 158)(16 157)(17 156)(18 155)(19 154)(20 153)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(37 50)(38 49)(39 48)(40 47)(51 53)(54 60)(55 59)(56 58)(61 69)(62 68)(63 67)(64 66)(71 78)(72 77)(73 76)(74 75)(79 80)(81 84)(82 83)(85 90)(86 89)(87 88)(91 93)(94 100)(95 99)(96 98)(101 109)(102 108)(103 107)(104 106)(111 118)(112 117)(113 116)(114 115)(119 120)(121 124)(122 123)(125 130)(126 129)(127 128)(131 141)(132 150)(133 149)(134 148)(135 147)(136 146)(137 145)(138 144)(139 143)(140 142)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,132,30,150)(2,133,21,141)(3,134,22,142)(4,135,23,143)(5,136,24,144)(6,137,25,145)(7,138,26,146)(8,139,27,147)(9,140,28,148)(10,131,29,149)(11,37,157,45)(12,38,158,46)(13,39,159,47)(14,40,160,48)(15,31,151,49)(16,32,152,50)(17,33,153,41)(18,34,154,42)(19,35,155,43)(20,36,156,44)(51,91,69,109)(52,92,70,110)(53,93,61,101)(54,94,62,102)(55,95,63,103)(56,96,64,104)(57,97,65,105)(58,98,66,106)(59,99,67,107)(60,100,68,108)(71,111,89,129)(72,112,90,130)(73,113,81,121)(74,114,82,122)(75,115,83,123)(76,116,84,124)(77,117,85,125)(78,118,86,126)(79,119,87,127)(80,120,88,128), (1,45,6,50)(2,44,7,49)(3,43,8,48)(4,42,9,47)(5,41,10,46)(11,150,16,145)(12,149,17,144)(13,148,18,143)(14,147,19,142)(15,146,20,141)(21,36,26,31)(22,35,27,40)(23,34,28,39)(24,33,29,38)(25,32,30,37)(51,73,56,78)(52,72,57,77)(53,71,58,76)(54,80,59,75)(55,79,60,74)(61,89,66,84)(62,88,67,83)(63,87,68,82)(64,86,69,81)(65,85,70,90)(91,126,96,121)(92,125,97,130)(93,124,98,129)(94,123,99,128)(95,122,100,127)(101,116,106,111)(102,115,107,120)(103,114,108,119)(104,113,109,118)(105,112,110,117)(131,153,136,158)(132,152,137,157)(133,151,138,156)(134,160,139,155)(135,159,140,154), (1,125,30,117)(2,126,21,118)(3,127,22,119)(4,128,23,120)(5,129,24,111)(6,130,25,112)(7,121,26,113)(8,122,27,114)(9,123,28,115)(10,124,29,116)(11,65,157,57)(12,66,158,58)(13,67,159,59)(14,68,160,60)(15,69,151,51)(16,70,152,52)(17,61,153,53)(18,62,154,54)(19,63,155,55)(20,64,156,56)(31,104,49,96)(32,105,50,97)(33,106,41,98)(34,107,42,99)(35,108,43,100)(36,109,44,91)(37,110,45,92)(38,101,46,93)(39,102,47,94)(40,103,48,95)(71,149,89,131)(72,150,90,132)(73,141,81,133)(74,142,82,134)(75,143,83,135)(76,144,84,136)(77,145,85,137)(78,146,86,138)(79,147,87,139)(80,148,88,140), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,152)(12,151)(13,160)(14,159)(15,158)(16,157)(17,156)(18,155)(19,154)(20,153)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,50)(38,49)(39,48)(40,47)(51,53)(54,60)(55,59)(56,58)(61,69)(62,68)(63,67)(64,66)(71,78)(72,77)(73,76)(74,75)(79,80)(81,84)(82,83)(85,90)(86,89)(87,88)(91,93)(94,100)(95,99)(96,98)(101,109)(102,108)(103,107)(104,106)(111,118)(112,117)(113,116)(114,115)(119,120)(121,124)(122,123)(125,130)(126,129)(127,128)(131,141)(132,150)(133,149)(134,148)(135,147)(136,146)(137,145)(138,144)(139,143)(140,142)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,132,30,150)(2,133,21,141)(3,134,22,142)(4,135,23,143)(5,136,24,144)(6,137,25,145)(7,138,26,146)(8,139,27,147)(9,140,28,148)(10,131,29,149)(11,37,157,45)(12,38,158,46)(13,39,159,47)(14,40,160,48)(15,31,151,49)(16,32,152,50)(17,33,153,41)(18,34,154,42)(19,35,155,43)(20,36,156,44)(51,91,69,109)(52,92,70,110)(53,93,61,101)(54,94,62,102)(55,95,63,103)(56,96,64,104)(57,97,65,105)(58,98,66,106)(59,99,67,107)(60,100,68,108)(71,111,89,129)(72,112,90,130)(73,113,81,121)(74,114,82,122)(75,115,83,123)(76,116,84,124)(77,117,85,125)(78,118,86,126)(79,119,87,127)(80,120,88,128), (1,45,6,50)(2,44,7,49)(3,43,8,48)(4,42,9,47)(5,41,10,46)(11,150,16,145)(12,149,17,144)(13,148,18,143)(14,147,19,142)(15,146,20,141)(21,36,26,31)(22,35,27,40)(23,34,28,39)(24,33,29,38)(25,32,30,37)(51,73,56,78)(52,72,57,77)(53,71,58,76)(54,80,59,75)(55,79,60,74)(61,89,66,84)(62,88,67,83)(63,87,68,82)(64,86,69,81)(65,85,70,90)(91,126,96,121)(92,125,97,130)(93,124,98,129)(94,123,99,128)(95,122,100,127)(101,116,106,111)(102,115,107,120)(103,114,108,119)(104,113,109,118)(105,112,110,117)(131,153,136,158)(132,152,137,157)(133,151,138,156)(134,160,139,155)(135,159,140,154), (1,125,30,117)(2,126,21,118)(3,127,22,119)(4,128,23,120)(5,129,24,111)(6,130,25,112)(7,121,26,113)(8,122,27,114)(9,123,28,115)(10,124,29,116)(11,65,157,57)(12,66,158,58)(13,67,159,59)(14,68,160,60)(15,69,151,51)(16,70,152,52)(17,61,153,53)(18,62,154,54)(19,63,155,55)(20,64,156,56)(31,104,49,96)(32,105,50,97)(33,106,41,98)(34,107,42,99)(35,108,43,100)(36,109,44,91)(37,110,45,92)(38,101,46,93)(39,102,47,94)(40,103,48,95)(71,149,89,131)(72,150,90,132)(73,141,81,133)(74,142,82,134)(75,143,83,135)(76,144,84,136)(77,145,85,137)(78,146,86,138)(79,147,87,139)(80,148,88,140), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,152)(12,151)(13,160)(14,159)(15,158)(16,157)(17,156)(18,155)(19,154)(20,153)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,50)(38,49)(39,48)(40,47)(51,53)(54,60)(55,59)(56,58)(61,69)(62,68)(63,67)(64,66)(71,78)(72,77)(73,76)(74,75)(79,80)(81,84)(82,83)(85,90)(86,89)(87,88)(91,93)(94,100)(95,99)(96,98)(101,109)(102,108)(103,107)(104,106)(111,118)(112,117)(113,116)(114,115)(119,120)(121,124)(122,123)(125,130)(126,129)(127,128)(131,141)(132,150)(133,149)(134,148)(135,147)(136,146)(137,145)(138,144)(139,143)(140,142) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,132,30,150),(2,133,21,141),(3,134,22,142),(4,135,23,143),(5,136,24,144),(6,137,25,145),(7,138,26,146),(8,139,27,147),(9,140,28,148),(10,131,29,149),(11,37,157,45),(12,38,158,46),(13,39,159,47),(14,40,160,48),(15,31,151,49),(16,32,152,50),(17,33,153,41),(18,34,154,42),(19,35,155,43),(20,36,156,44),(51,91,69,109),(52,92,70,110),(53,93,61,101),(54,94,62,102),(55,95,63,103),(56,96,64,104),(57,97,65,105),(58,98,66,106),(59,99,67,107),(60,100,68,108),(71,111,89,129),(72,112,90,130),(73,113,81,121),(74,114,82,122),(75,115,83,123),(76,116,84,124),(77,117,85,125),(78,118,86,126),(79,119,87,127),(80,120,88,128)], [(1,45,6,50),(2,44,7,49),(3,43,8,48),(4,42,9,47),(5,41,10,46),(11,150,16,145),(12,149,17,144),(13,148,18,143),(14,147,19,142),(15,146,20,141),(21,36,26,31),(22,35,27,40),(23,34,28,39),(24,33,29,38),(25,32,30,37),(51,73,56,78),(52,72,57,77),(53,71,58,76),(54,80,59,75),(55,79,60,74),(61,89,66,84),(62,88,67,83),(63,87,68,82),(64,86,69,81),(65,85,70,90),(91,126,96,121),(92,125,97,130),(93,124,98,129),(94,123,99,128),(95,122,100,127),(101,116,106,111),(102,115,107,120),(103,114,108,119),(104,113,109,118),(105,112,110,117),(131,153,136,158),(132,152,137,157),(133,151,138,156),(134,160,139,155),(135,159,140,154)], [(1,125,30,117),(2,126,21,118),(3,127,22,119),(4,128,23,120),(5,129,24,111),(6,130,25,112),(7,121,26,113),(8,122,27,114),(9,123,28,115),(10,124,29,116),(11,65,157,57),(12,66,158,58),(13,67,159,59),(14,68,160,60),(15,69,151,51),(16,70,152,52),(17,61,153,53),(18,62,154,54),(19,63,155,55),(20,64,156,56),(31,104,49,96),(32,105,50,97),(33,106,41,98),(34,107,42,99),(35,108,43,100),(36,109,44,91),(37,110,45,92),(38,101,46,93),(39,102,47,94),(40,103,48,95),(71,149,89,131),(72,150,90,132),(73,141,81,133),(74,142,82,134),(75,143,83,135),(76,144,84,136),(77,145,85,137),(78,146,86,138),(79,147,87,139),(80,148,88,140)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,152),(12,151),(13,160),(14,159),(15,158),(16,157),(17,156),(18,155),(19,154),(20,153),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(37,50),(38,49),(39,48),(40,47),(51,53),(54,60),(55,59),(56,58),(61,69),(62,68),(63,67),(64,66),(71,78),(72,77),(73,76),(74,75),(79,80),(81,84),(82,83),(85,90),(86,89),(87,88),(91,93),(94,100),(95,99),(96,98),(101,109),(102,108),(103,107),(104,106),(111,118),(112,117),(113,116),(114,115),(119,120),(121,124),(122,123),(125,130),(126,129),(127,128),(131,141),(132,150),(133,149),(134,148),(135,147),(136,146),(137,145),(138,144),(139,143),(140,142)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
006600
0035100
000066
0000351
,
100000
1400000
00003928
0000132
00392800
0013200
,
4020000
4010000
0000400
0000351
001000
0064000
,
4020000
010000
003402818
000342313
00132370
00182807
,
100000
1400000
0040000
0035100
000010
0000640

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,6,35,0,0,0,0,6,1,0,0,0,0,0,0,6,35,0,0,0,0,6,1],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,0,0,39,13,0,0,0,0,28,2,0,0,39,13,0,0,0,0,28,2,0,0],[40,40,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,6,0,0,0,0,0,40,0,0,40,35,0,0,0,0,0,1,0,0],[40,0,0,0,0,0,2,1,0,0,0,0,0,0,34,0,13,18,0,0,0,34,23,28,0,0,28,23,7,0,0,0,18,13,0,7],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,40,35,0,0,0,0,0,1,0,0,0,0,0,0,1,6,0,0,0,0,0,40] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order12222222224444444444445510···10101010101010101020···2020202020
size11112244202044441010101020202020222···2444488884···48888

50 irreducible representations

dim11111111122222244444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2D4D5D10D10D10D102+ (1+4)2- (1+4)D4×D5D46D10D4.10D10
kernelC10.322+ (1+4)Dic5.14D4D10⋊D4D10⋊Q8C2×C10.D4C207D4Dic5⋊D4C5×C4⋊D4C2×D42D5C2×Dic5C4⋊D4C22⋊C4C4⋊C4C22×C4C2×D4C10C10C22C2C2
# reps12221141242422611444

In GAP, Magma, Sage, TeX

C_{10}._{32}2_+^{(1+4)}
% in TeX

G:=Group("C10.32ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1269);
// by ID

G=gap.SmallGroup(320,1269);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,387,1123,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=b^2,a*b=b*a,c*a*c^-1=e*a*e=a^-1,a*d=d*a,c*b*c^-1=a^5*b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=e*c*e=a^5*c,e*d*e=a^5*b^2*d>;
// generators/relations

׿
×
𝔽