Copied to
clipboard

?

G = Dic1019D4order 320 = 26·5

7th semidirect product of Dic10 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1019D4, C10.692- (1+4), C4⋊D46D5, C53(Q85D4), C4.108(D4×D5), C4⋊C4.176D10, (D4×Dic5)⋊15C2, C20.224(C2×D4), C22⋊C4.5D10, D102Q819C2, Dic5⋊D49C2, (C2×D4).151D10, Dic5.44(C2×D4), C10.61(C22×D4), Dic53Q819C2, C20.17D414C2, C221(D42D5), C23.9(C22×D5), (C2×C10).142C24, (C2×C20).500C23, (C22×C4).218D10, Dic5.5D417C2, (C22×Dic10)⋊16C2, (D4×C10).116C22, C4⋊Dic5.204C22, (C22×C10).13C23, (C2×Dic5).65C23, (C4×Dic5).97C22, (C22×D5).61C23, C22.163(C23×D5), Dic5.14D416C2, C23.D5.20C22, D10⋊C4.11C22, (C22×C20).236C22, C10.D4.13C22, C2.27(D4.10D10), (C2×Dic10).253C22, (C22×Dic5).103C22, C2.34(C2×D4×D5), (C5×C4⋊D4)⋊7C2, (C4×C5⋊D4)⋊14C2, (C2×C10)⋊4(C4○D4), C10.80(C2×C4○D4), (C2×D42D5)⋊10C2, (C2×C4×D5).90C22, C2.31(C2×D42D5), (C5×C4⋊C4).138C22, (C2×C4).173(C22×D5), (C5×C22⋊C4).7C22, (C2×C5⋊D4).126C22, SmallGroup(320,1270)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1019D4
C1C5C10C2×C10C2×Dic5C2×Dic10C22×Dic10 — Dic1019D4
C5C2×C10 — Dic1019D4

Subgroups: 982 in 290 conjugacy classes, 107 normal (43 characteristic)
C1, C2 [×3], C2 [×5], C4 [×2], C4 [×12], C22, C22 [×2], C22 [×11], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×19], D4 [×12], Q8 [×10], C23, C23 [×2], C23, D5, C10 [×3], C10 [×4], C42 [×3], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×5], C22×C4, C22×C4 [×5], C2×D4, C2×D4 [×2], C2×D4 [×3], C2×Q8 [×8], C4○D4 [×4], Dic5 [×4], Dic5 [×5], C20 [×2], C20 [×3], D10 [×3], C2×C10, C2×C10 [×2], C2×C10 [×8], C4×D4 [×3], C4×Q8, C4⋊D4, C4⋊D4 [×2], C22⋊Q8 [×3], C4.4D4 [×3], C22×Q8, C2×C4○D4, Dic10 [×4], Dic10 [×6], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×4], C2×Dic5 [×8], C5⋊D4 [×6], C2×C20 [×2], C2×C20 [×2], C2×C20 [×2], C5×D4 [×6], C22×D5, C22×C10, C22×C10 [×2], Q85D4, C4×Dic5, C4×Dic5 [×2], C10.D4, C10.D4 [×2], C4⋊Dic5 [×2], D10⋊C4, D10⋊C4 [×2], C23.D5, C23.D5 [×4], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×Dic10 [×2], C2×Dic10 [×4], C2×C4×D5, D42D5 [×4], C22×Dic5 [×4], C2×C5⋊D4, C2×C5⋊D4 [×2], C22×C20, D4×C10, D4×C10 [×2], Dic5.14D4 [×2], Dic5.5D4 [×2], Dic53Q8, D102Q8, C4×C5⋊D4, D4×Dic5 [×2], C20.17D4, Dic5⋊D4 [×2], C5×C4⋊D4, C22×Dic10, C2×D42D5, Dic1019D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2- (1+4), C22×D5 [×7], Q85D4, D4×D5 [×2], D42D5 [×2], C23×D5, C2×D4×D5, C2×D42D5, D4.10D10, Dic1019D4

Generators and relations
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, cac-1=a11, ad=da, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 76 11 66)(2 75 12 65)(3 74 13 64)(4 73 14 63)(5 72 15 62)(6 71 16 61)(7 70 17 80)(8 69 18 79)(9 68 19 78)(10 67 20 77)(21 55 31 45)(22 54 32 44)(23 53 33 43)(24 52 34 42)(25 51 35 41)(26 50 36 60)(27 49 37 59)(28 48 38 58)(29 47 39 57)(30 46 40 56)(81 139 91 129)(82 138 92 128)(83 137 93 127)(84 136 94 126)(85 135 95 125)(86 134 96 124)(87 133 97 123)(88 132 98 122)(89 131 99 121)(90 130 100 140)(101 156 111 146)(102 155 112 145)(103 154 113 144)(104 153 114 143)(105 152 115 142)(106 151 116 141)(107 150 117 160)(108 149 118 159)(109 148 119 158)(110 147 120 157)
(1 44 132 112)(2 55 133 103)(3 46 134 114)(4 57 135 105)(5 48 136 116)(6 59 137 107)(7 50 138 118)(8 41 139 109)(9 52 140 120)(10 43 121 111)(11 54 122 102)(12 45 123 113)(13 56 124 104)(14 47 125 115)(15 58 126 106)(16 49 127 117)(17 60 128 108)(18 51 129 119)(19 42 130 110)(20 53 131 101)(21 87 144 65)(22 98 145 76)(23 89 146 67)(24 100 147 78)(25 91 148 69)(26 82 149 80)(27 93 150 71)(28 84 151 62)(29 95 152 73)(30 86 153 64)(31 97 154 75)(32 88 155 66)(33 99 156 77)(34 90 157 68)(35 81 158 79)(36 92 159 70)(37 83 160 61)(38 94 141 72)(39 85 142 63)(40 96 143 74)
(1 160)(2 141)(3 142)(4 143)(5 144)(6 145)(7 146)(8 147)(9 148)(10 149)(11 150)(12 151)(13 152)(14 153)(15 154)(16 155)(17 156)(18 157)(19 158)(20 159)(21 136)(22 137)(23 138)(24 139)(25 140)(26 121)(27 122)(28 123)(29 124)(30 125)(31 126)(32 127)(33 128)(34 129)(35 130)(36 131)(37 132)(38 133)(39 134)(40 135)(41 100)(42 81)(43 82)(44 83)(45 84)(46 85)(47 86)(48 87)(49 88)(50 89)(51 90)(52 91)(53 92)(54 93)(55 94)(56 95)(57 96)(58 97)(59 98)(60 99)(61 112)(62 113)(63 114)(64 115)(65 116)(66 117)(67 118)(68 119)(69 120)(70 101)(71 102)(72 103)(73 104)(74 105)(75 106)(76 107)(77 108)(78 109)(79 110)(80 111)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,76,11,66)(2,75,12,65)(3,74,13,64)(4,73,14,63)(5,72,15,62)(6,71,16,61)(7,70,17,80)(8,69,18,79)(9,68,19,78)(10,67,20,77)(21,55,31,45)(22,54,32,44)(23,53,33,43)(24,52,34,42)(25,51,35,41)(26,50,36,60)(27,49,37,59)(28,48,38,58)(29,47,39,57)(30,46,40,56)(81,139,91,129)(82,138,92,128)(83,137,93,127)(84,136,94,126)(85,135,95,125)(86,134,96,124)(87,133,97,123)(88,132,98,122)(89,131,99,121)(90,130,100,140)(101,156,111,146)(102,155,112,145)(103,154,113,144)(104,153,114,143)(105,152,115,142)(106,151,116,141)(107,150,117,160)(108,149,118,159)(109,148,119,158)(110,147,120,157), (1,44,132,112)(2,55,133,103)(3,46,134,114)(4,57,135,105)(5,48,136,116)(6,59,137,107)(7,50,138,118)(8,41,139,109)(9,52,140,120)(10,43,121,111)(11,54,122,102)(12,45,123,113)(13,56,124,104)(14,47,125,115)(15,58,126,106)(16,49,127,117)(17,60,128,108)(18,51,129,119)(19,42,130,110)(20,53,131,101)(21,87,144,65)(22,98,145,76)(23,89,146,67)(24,100,147,78)(25,91,148,69)(26,82,149,80)(27,93,150,71)(28,84,151,62)(29,95,152,73)(30,86,153,64)(31,97,154,75)(32,88,155,66)(33,99,156,77)(34,90,157,68)(35,81,158,79)(36,92,159,70)(37,83,160,61)(38,94,141,72)(39,85,142,63)(40,96,143,74), (1,160)(2,141)(3,142)(4,143)(5,144)(6,145)(7,146)(8,147)(9,148)(10,149)(11,150)(12,151)(13,152)(14,153)(15,154)(16,155)(17,156)(18,157)(19,158)(20,159)(21,136)(22,137)(23,138)(24,139)(25,140)(26,121)(27,122)(28,123)(29,124)(30,125)(31,126)(32,127)(33,128)(34,129)(35,130)(36,131)(37,132)(38,133)(39,134)(40,135)(41,100)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95)(57,96)(58,97)(59,98)(60,99)(61,112)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119)(69,120)(70,101)(71,102)(72,103)(73,104)(74,105)(75,106)(76,107)(77,108)(78,109)(79,110)(80,111)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,76,11,66)(2,75,12,65)(3,74,13,64)(4,73,14,63)(5,72,15,62)(6,71,16,61)(7,70,17,80)(8,69,18,79)(9,68,19,78)(10,67,20,77)(21,55,31,45)(22,54,32,44)(23,53,33,43)(24,52,34,42)(25,51,35,41)(26,50,36,60)(27,49,37,59)(28,48,38,58)(29,47,39,57)(30,46,40,56)(81,139,91,129)(82,138,92,128)(83,137,93,127)(84,136,94,126)(85,135,95,125)(86,134,96,124)(87,133,97,123)(88,132,98,122)(89,131,99,121)(90,130,100,140)(101,156,111,146)(102,155,112,145)(103,154,113,144)(104,153,114,143)(105,152,115,142)(106,151,116,141)(107,150,117,160)(108,149,118,159)(109,148,119,158)(110,147,120,157), (1,44,132,112)(2,55,133,103)(3,46,134,114)(4,57,135,105)(5,48,136,116)(6,59,137,107)(7,50,138,118)(8,41,139,109)(9,52,140,120)(10,43,121,111)(11,54,122,102)(12,45,123,113)(13,56,124,104)(14,47,125,115)(15,58,126,106)(16,49,127,117)(17,60,128,108)(18,51,129,119)(19,42,130,110)(20,53,131,101)(21,87,144,65)(22,98,145,76)(23,89,146,67)(24,100,147,78)(25,91,148,69)(26,82,149,80)(27,93,150,71)(28,84,151,62)(29,95,152,73)(30,86,153,64)(31,97,154,75)(32,88,155,66)(33,99,156,77)(34,90,157,68)(35,81,158,79)(36,92,159,70)(37,83,160,61)(38,94,141,72)(39,85,142,63)(40,96,143,74), (1,160)(2,141)(3,142)(4,143)(5,144)(6,145)(7,146)(8,147)(9,148)(10,149)(11,150)(12,151)(13,152)(14,153)(15,154)(16,155)(17,156)(18,157)(19,158)(20,159)(21,136)(22,137)(23,138)(24,139)(25,140)(26,121)(27,122)(28,123)(29,124)(30,125)(31,126)(32,127)(33,128)(34,129)(35,130)(36,131)(37,132)(38,133)(39,134)(40,135)(41,100)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(51,90)(52,91)(53,92)(54,93)(55,94)(56,95)(57,96)(58,97)(59,98)(60,99)(61,112)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119)(69,120)(70,101)(71,102)(72,103)(73,104)(74,105)(75,106)(76,107)(77,108)(78,109)(79,110)(80,111) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,76,11,66),(2,75,12,65),(3,74,13,64),(4,73,14,63),(5,72,15,62),(6,71,16,61),(7,70,17,80),(8,69,18,79),(9,68,19,78),(10,67,20,77),(21,55,31,45),(22,54,32,44),(23,53,33,43),(24,52,34,42),(25,51,35,41),(26,50,36,60),(27,49,37,59),(28,48,38,58),(29,47,39,57),(30,46,40,56),(81,139,91,129),(82,138,92,128),(83,137,93,127),(84,136,94,126),(85,135,95,125),(86,134,96,124),(87,133,97,123),(88,132,98,122),(89,131,99,121),(90,130,100,140),(101,156,111,146),(102,155,112,145),(103,154,113,144),(104,153,114,143),(105,152,115,142),(106,151,116,141),(107,150,117,160),(108,149,118,159),(109,148,119,158),(110,147,120,157)], [(1,44,132,112),(2,55,133,103),(3,46,134,114),(4,57,135,105),(5,48,136,116),(6,59,137,107),(7,50,138,118),(8,41,139,109),(9,52,140,120),(10,43,121,111),(11,54,122,102),(12,45,123,113),(13,56,124,104),(14,47,125,115),(15,58,126,106),(16,49,127,117),(17,60,128,108),(18,51,129,119),(19,42,130,110),(20,53,131,101),(21,87,144,65),(22,98,145,76),(23,89,146,67),(24,100,147,78),(25,91,148,69),(26,82,149,80),(27,93,150,71),(28,84,151,62),(29,95,152,73),(30,86,153,64),(31,97,154,75),(32,88,155,66),(33,99,156,77),(34,90,157,68),(35,81,158,79),(36,92,159,70),(37,83,160,61),(38,94,141,72),(39,85,142,63),(40,96,143,74)], [(1,160),(2,141),(3,142),(4,143),(5,144),(6,145),(7,146),(8,147),(9,148),(10,149),(11,150),(12,151),(13,152),(14,153),(15,154),(16,155),(17,156),(18,157),(19,158),(20,159),(21,136),(22,137),(23,138),(24,139),(25,140),(26,121),(27,122),(28,123),(29,124),(30,125),(31,126),(32,127),(33,128),(34,129),(35,130),(36,131),(37,132),(38,133),(39,134),(40,135),(41,100),(42,81),(43,82),(44,83),(45,84),(46,85),(47,86),(48,87),(49,88),(50,89),(51,90),(52,91),(53,92),(54,93),(55,94),(56,95),(57,96),(58,97),(59,98),(60,99),(61,112),(62,113),(63,114),(64,115),(65,116),(66,117),(67,118),(68,119),(69,120),(70,101),(71,102),(72,103),(73,104),(74,105),(75,106),(76,107),(77,108),(78,109),(79,110),(80,111)])

Matrix representation G ⊆ GL6(𝔽41)

900000
0320000
000100
00403400
000010
000001
,
090000
900000
001000
00344000
0000400
0000040
,
010000
100000
001000
000100
00002331
00001218
,
100000
010000
001000
000100
00001810
00002123

G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,0,32,0,0,0,0,0,0,0,40,0,0,0,0,1,34,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,9,0,0,0,0,9,0,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,23,12,0,0,0,0,31,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,21,0,0,0,0,10,23] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F···4M4N4O4P5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order122222222444444···44445510···10101010101010101020···2020202020
size11112244202244410···10202020222···2444488884···48888

53 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+--
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D102- (1+4)D4×D5D42D5D4.10D10
kernelDic1019D4Dic5.14D4Dic5.5D4Dic53Q8D102Q8C4×C5⋊D4D4×Dic5C20.17D4Dic5⋊D4C5×C4⋊D4C22×Dic10C2×D42D5Dic10C4⋊D4C2×C10C22⋊C4C4⋊C4C22×C4C2×D4C10C4C22C2
# reps12211121211142442261444

In GAP, Magma, Sage, TeX

Dic_{10}\rtimes_{19}D_4
% in TeX

G:=Group("Dic10:19D4");
// GroupNames label

G:=SmallGroup(320,1270);
// by ID

G=gap.SmallGroup(320,1270);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,477,232,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,c*a*c^-1=a^11,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽