Copied to
clipboard

?

G = C20⋊(C4○D4)  order 320 = 26·5

2nd semidirect product of C20 and C4○D4 acting via C4○D4/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20⋊Q818C2, C209(C4○D4), C4⋊D425D5, C207D431C2, C20⋊D414C2, C43(D42D5), C22.1(D4×D5), C4⋊C4.175D10, (C2×Dic5)⋊13D4, (D4×Dic5)⋊14C2, D208C419C2, Dic52(C4○D4), Dic5⋊D47C2, Dic54D45C2, (C2×D4).150D10, (C2×C20).34C23, C22⋊C4.45D10, Dic5.17(C2×D4), C10.59(C22×D4), (C2×C10).140C24, (C22×C4).366D10, Dic5.5D416C2, (D4×C10).114C22, (C2×D20).147C22, C4⋊Dic5.203C22, (C22×C10).11C23, C53(C22.26C24), (C22×D5).59C23, C23.178(C22×D5), C22.161(C23×D5), C23.D5.18C22, D10⋊C4.57C22, (C22×C20).235C22, (C2×Dic5).233C23, (C4×Dic5).285C22, C10.D4.12C22, (C2×Dic10).156C22, (C22×Dic5).244C22, C2.32(C2×D4×D5), (C2×C4×Dic5)⋊7C2, (C5×C4⋊D4)⋊5C2, C2.33(D5×C4○D4), (C2×C10).3(C2×D4), (C2×D42D5)⋊8C2, C10.79(C2×C4○D4), (C2×C4×D5).88C22, C2.30(C2×D42D5), (C2×C4).34(C22×D5), (C5×C4⋊C4).136C22, (C2×C5⋊D4).23C22, (C5×C22⋊C4).5C22, SmallGroup(320,1268)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C20⋊(C4○D4)
C1C5C10C2×C10C2×Dic5C22×Dic5C2×D42D5 — C20⋊(C4○D4)
C5C2×C10 — C20⋊(C4○D4)

Subgroups: 1102 in 310 conjugacy classes, 109 normal (43 characteristic)
C1, C2 [×3], C2 [×6], C4 [×2], C4 [×12], C22, C22 [×2], C22 [×14], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×22], D4 [×20], Q8 [×4], C23, C23 [×2], C23 [×2], D5 [×2], C10 [×3], C10 [×4], C42 [×4], C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×3], C22×C4, C22×C4 [×6], C2×D4, C2×D4 [×2], C2×D4 [×7], C2×Q8 [×2], C4○D4 [×8], Dic5 [×6], Dic5 [×3], C20 [×2], C20 [×3], D10 [×6], C2×C10, C2×C10 [×2], C2×C10 [×8], C2×C42, C4×D4 [×4], C4⋊D4, C4⋊D4 [×3], C4.4D4 [×2], C41D4, C4⋊Q8, C2×C4○D4 [×2], Dic10 [×4], C4×D5 [×4], D20 [×2], C2×Dic5 [×4], C2×Dic5 [×6], C2×Dic5 [×6], C5⋊D4 [×12], C2×C20 [×2], C2×C20 [×2], C2×C20 [×2], C5×D4 [×6], C22×D5 [×2], C22×C10, C22×C10 [×2], C22.26C24, C4×Dic5 [×4], C10.D4 [×2], C4⋊Dic5, D10⋊C4 [×4], C23.D5 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×C4×D5 [×2], C2×D20, D42D5 [×8], C22×Dic5 [×2], C22×Dic5 [×2], C2×C5⋊D4 [×6], C22×C20, D4×C10, D4×C10 [×2], Dic54D4 [×2], Dic5.5D4 [×2], C20⋊Q8, D208C4, C2×C4×Dic5, C207D4, D4×Dic5, Dic5⋊D4 [×2], C20⋊D4, C5×C4⋊D4, C2×D42D5 [×2], C20⋊(C4○D4)

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×4], C24, D10 [×7], C22×D4, C2×C4○D4 [×2], C22×D5 [×7], C22.26C24, D4×D5 [×2], D42D5 [×2], C23×D5, C2×D4×D5, C2×D42D5, D5×C4○D4, C20⋊(C4○D4)

Generators and relations
 G = < a,b,c,d | a20=b4=d2=1, c2=b2, bab-1=a9, cac-1=a11, ad=da, bc=cb, bd=db, dcd=b2c >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 135 149 23)(2 124 150 32)(3 133 151 21)(4 122 152 30)(5 131 153 39)(6 140 154 28)(7 129 155 37)(8 138 156 26)(9 127 157 35)(10 136 158 24)(11 125 159 33)(12 134 160 22)(13 123 141 31)(14 132 142 40)(15 121 143 29)(16 130 144 38)(17 139 145 27)(18 128 146 36)(19 137 147 25)(20 126 148 34)(41 109 83 65)(42 118 84 74)(43 107 85 63)(44 116 86 72)(45 105 87 61)(46 114 88 70)(47 103 89 79)(48 112 90 68)(49 101 91 77)(50 110 92 66)(51 119 93 75)(52 108 94 64)(53 117 95 73)(54 106 96 62)(55 115 97 71)(56 104 98 80)(57 113 99 69)(58 102 100 78)(59 111 81 67)(60 120 82 76)
(1 23 149 135)(2 34 150 126)(3 25 151 137)(4 36 152 128)(5 27 153 139)(6 38 154 130)(7 29 155 121)(8 40 156 132)(9 31 157 123)(10 22 158 134)(11 33 159 125)(12 24 160 136)(13 35 141 127)(14 26 142 138)(15 37 143 129)(16 28 144 140)(17 39 145 131)(18 30 146 122)(19 21 147 133)(20 32 148 124)(41 117 83 73)(42 108 84 64)(43 119 85 75)(44 110 86 66)(45 101 87 77)(46 112 88 68)(47 103 89 79)(48 114 90 70)(49 105 91 61)(50 116 92 72)(51 107 93 63)(52 118 94 74)(53 109 95 65)(54 120 96 76)(55 111 97 67)(56 102 98 78)(57 113 99 69)(58 104 100 80)(59 115 81 71)(60 106 82 62)
(1 113)(2 114)(3 115)(4 116)(5 117)(6 118)(7 119)(8 120)(9 101)(10 102)(11 103)(12 104)(13 105)(14 106)(15 107)(16 108)(17 109)(18 110)(19 111)(20 112)(21 55)(22 56)(23 57)(24 58)(25 59)(26 60)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)(81 137)(82 138)(83 139)(84 140)(85 121)(86 122)(87 123)(88 124)(89 125)(90 126)(91 127)(92 128)(93 129)(94 130)(95 131)(96 132)(97 133)(98 134)(99 135)(100 136)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,135,149,23)(2,124,150,32)(3,133,151,21)(4,122,152,30)(5,131,153,39)(6,140,154,28)(7,129,155,37)(8,138,156,26)(9,127,157,35)(10,136,158,24)(11,125,159,33)(12,134,160,22)(13,123,141,31)(14,132,142,40)(15,121,143,29)(16,130,144,38)(17,139,145,27)(18,128,146,36)(19,137,147,25)(20,126,148,34)(41,109,83,65)(42,118,84,74)(43,107,85,63)(44,116,86,72)(45,105,87,61)(46,114,88,70)(47,103,89,79)(48,112,90,68)(49,101,91,77)(50,110,92,66)(51,119,93,75)(52,108,94,64)(53,117,95,73)(54,106,96,62)(55,115,97,71)(56,104,98,80)(57,113,99,69)(58,102,100,78)(59,111,81,67)(60,120,82,76), (1,23,149,135)(2,34,150,126)(3,25,151,137)(4,36,152,128)(5,27,153,139)(6,38,154,130)(7,29,155,121)(8,40,156,132)(9,31,157,123)(10,22,158,134)(11,33,159,125)(12,24,160,136)(13,35,141,127)(14,26,142,138)(15,37,143,129)(16,28,144,140)(17,39,145,131)(18,30,146,122)(19,21,147,133)(20,32,148,124)(41,117,83,73)(42,108,84,64)(43,119,85,75)(44,110,86,66)(45,101,87,77)(46,112,88,68)(47,103,89,79)(48,114,90,70)(49,105,91,61)(50,116,92,72)(51,107,93,63)(52,118,94,74)(53,109,95,65)(54,120,96,76)(55,111,97,67)(56,102,98,78)(57,113,99,69)(58,104,100,80)(59,115,81,71)(60,106,82,62), (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,137)(82,138)(83,139)(84,140)(85,121)(86,122)(87,123)(88,124)(89,125)(90,126)(91,127)(92,128)(93,129)(94,130)(95,131)(96,132)(97,133)(98,134)(99,135)(100,136)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,135,149,23)(2,124,150,32)(3,133,151,21)(4,122,152,30)(5,131,153,39)(6,140,154,28)(7,129,155,37)(8,138,156,26)(9,127,157,35)(10,136,158,24)(11,125,159,33)(12,134,160,22)(13,123,141,31)(14,132,142,40)(15,121,143,29)(16,130,144,38)(17,139,145,27)(18,128,146,36)(19,137,147,25)(20,126,148,34)(41,109,83,65)(42,118,84,74)(43,107,85,63)(44,116,86,72)(45,105,87,61)(46,114,88,70)(47,103,89,79)(48,112,90,68)(49,101,91,77)(50,110,92,66)(51,119,93,75)(52,108,94,64)(53,117,95,73)(54,106,96,62)(55,115,97,71)(56,104,98,80)(57,113,99,69)(58,102,100,78)(59,111,81,67)(60,120,82,76), (1,23,149,135)(2,34,150,126)(3,25,151,137)(4,36,152,128)(5,27,153,139)(6,38,154,130)(7,29,155,121)(8,40,156,132)(9,31,157,123)(10,22,158,134)(11,33,159,125)(12,24,160,136)(13,35,141,127)(14,26,142,138)(15,37,143,129)(16,28,144,140)(17,39,145,131)(18,30,146,122)(19,21,147,133)(20,32,148,124)(41,117,83,73)(42,108,84,64)(43,119,85,75)(44,110,86,66)(45,101,87,77)(46,112,88,68)(47,103,89,79)(48,114,90,70)(49,105,91,61)(50,116,92,72)(51,107,93,63)(52,118,94,74)(53,109,95,65)(54,120,96,76)(55,111,97,67)(56,102,98,78)(57,113,99,69)(58,104,100,80)(59,115,81,71)(60,106,82,62), (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,137)(82,138)(83,139)(84,140)(85,121)(86,122)(87,123)(88,124)(89,125)(90,126)(91,127)(92,128)(93,129)(94,130)(95,131)(96,132)(97,133)(98,134)(99,135)(100,136) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,135,149,23),(2,124,150,32),(3,133,151,21),(4,122,152,30),(5,131,153,39),(6,140,154,28),(7,129,155,37),(8,138,156,26),(9,127,157,35),(10,136,158,24),(11,125,159,33),(12,134,160,22),(13,123,141,31),(14,132,142,40),(15,121,143,29),(16,130,144,38),(17,139,145,27),(18,128,146,36),(19,137,147,25),(20,126,148,34),(41,109,83,65),(42,118,84,74),(43,107,85,63),(44,116,86,72),(45,105,87,61),(46,114,88,70),(47,103,89,79),(48,112,90,68),(49,101,91,77),(50,110,92,66),(51,119,93,75),(52,108,94,64),(53,117,95,73),(54,106,96,62),(55,115,97,71),(56,104,98,80),(57,113,99,69),(58,102,100,78),(59,111,81,67),(60,120,82,76)], [(1,23,149,135),(2,34,150,126),(3,25,151,137),(4,36,152,128),(5,27,153,139),(6,38,154,130),(7,29,155,121),(8,40,156,132),(9,31,157,123),(10,22,158,134),(11,33,159,125),(12,24,160,136),(13,35,141,127),(14,26,142,138),(15,37,143,129),(16,28,144,140),(17,39,145,131),(18,30,146,122),(19,21,147,133),(20,32,148,124),(41,117,83,73),(42,108,84,64),(43,119,85,75),(44,110,86,66),(45,101,87,77),(46,112,88,68),(47,103,89,79),(48,114,90,70),(49,105,91,61),(50,116,92,72),(51,107,93,63),(52,118,94,74),(53,109,95,65),(54,120,96,76),(55,111,97,67),(56,102,98,78),(57,113,99,69),(58,104,100,80),(59,115,81,71),(60,106,82,62)], [(1,113),(2,114),(3,115),(4,116),(5,117),(6,118),(7,119),(8,120),(9,101),(10,102),(11,103),(12,104),(13,105),(14,106),(15,107),(16,108),(17,109),(18,110),(19,111),(20,112),(21,55),(22,56),(23,57),(24,58),(25,59),(26,60),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160),(81,137),(82,138),(83,139),(84,140),(85,121),(86,122),(87,123),(88,124),(89,125),(90,126),(91,127),(92,128),(93,129),(94,130),(95,131),(96,132),(97,133),(98,134),(99,135),(100,136)])

Matrix representation G ⊆ GL6(𝔽41)

010000
40350000
00403900
001100
0000400
0000040
,
3560000
160000
009000
000900
0000320
0000032
,
4000000
0400000
0032000
009900
000090
0000132
,
4000000
0400000
0091800
00323200
000092
0000132

G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,35,0,0,0,0,0,0,40,1,0,0,0,0,39,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[35,1,0,0,0,0,6,6,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,9,0,0,0,0,0,9,0,0,0,0,0,0,9,1,0,0,0,0,0,32],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,32,0,0,0,0,18,32,0,0,0,0,0,0,9,1,0,0,0,0,2,32] >;

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K···4P4Q4R5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order122222222244444444444···4445510···10101010101010101020···2020202020
size111122442020222244555510···102020222···2444488884···48888

56 irreducible representations

dim11111111111122222222444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4C4○D4D10D10D10D10D42D5D4×D5D5×C4○D4
kernelC20⋊(C4○D4)Dic54D4Dic5.5D4C20⋊Q8D208C4C2×C4×Dic5C207D4D4×Dic5Dic5⋊D4C20⋊D4C5×C4⋊D4C2×D42D5C2×Dic5C4⋊D4Dic5C20C22⋊C4C4⋊C4C22×C4C2×D4C4C22C2
# reps12211111211242444226444

In GAP, Magma, Sage, TeX

C_{20}\rtimes (C_4\circ D_4)
% in TeX

G:=Group("C20:(C4oD4)");
// GroupNames label

G:=SmallGroup(320,1268);
// by ID

G=gap.SmallGroup(320,1268);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,387,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^4=d^2=1,c^2=b^2,b*a*b^-1=a^9,c*a*c^-1=a^11,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations

׿
×
𝔽