metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20.31D4, C23.36D20, (C2×C8)⋊15D10, C22⋊C8⋊8D5, (C2×C10)⋊1SD16, C4.119(D4×D5), (C2×C20).42D4, (C2×C4).31D20, D20⋊5C4⋊8C2, (C2×C40)⋊14C22, C10.7C22≀C2, C20.331(C2×D4), C5⋊1(C22⋊SD16), C4⋊Dic5⋊1C22, C10.7(C2×SD16), C20.48D4⋊1C2, C10.8(C8⋊C22), C22⋊3(C40⋊C2), (C22×D20).3C2, (C22×C4).81D10, (C22×C10).51D4, C2.11(C8⋊D10), (C2×C20).741C23, (C2×Dic10)⋊1C22, C22.104(C2×D20), C2.10(C22⋊D20), (C2×D20).197C22, (C22×C20).50C22, (C2×C40⋊C2)⋊9C2, (C5×C22⋊C8)⋊10C2, C2.10(C2×C40⋊C2), (C2×C10).124(C2×D4), (C2×C4).686(C22×D5), SmallGroup(320,358)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D20.31D4
G = < a,b,c,d | a20=b2=d2=1, c4=a10, bab=a-1, ac=ca, ad=da, cbc-1=a15b, bd=db, dcd=a15c3 >
Subgroups: 1070 in 188 conjugacy classes, 47 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C24, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, C22⋊Q8, C2×SD16, C22×D4, C40, Dic10, D20, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×C10, C22⋊SD16, C40⋊C2, C10.D4, C4⋊Dic5, C23.D5, C2×C40, C2×Dic10, C2×D20, C2×D20, C22×C20, C23×D5, D20⋊5C4, C5×C22⋊C8, C2×C40⋊C2, C20.48D4, C22×D20, D20.31D4
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, D10, C22≀C2, C2×SD16, C8⋊C22, D20, C22×D5, C22⋊SD16, C40⋊C2, C2×D20, D4×D5, C22⋊D20, C2×C40⋊C2, C8⋊D10, D20.31D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 38)(22 37)(23 36)(24 35)(25 34)(26 33)(27 32)(28 31)(29 30)(39 40)(41 45)(42 44)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 54)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)(78 80)
(1 77 25 56 11 67 35 46)(2 78 26 57 12 68 36 47)(3 79 27 58 13 69 37 48)(4 80 28 59 14 70 38 49)(5 61 29 60 15 71 39 50)(6 62 30 41 16 72 40 51)(7 63 31 42 17 73 21 52)(8 64 32 43 18 74 22 53)(9 65 33 44 19 75 23 54)(10 66 34 45 20 76 24 55)
(41 67)(42 68)(43 69)(44 70)(45 71)(46 72)(47 73)(48 74)(49 75)(50 76)(51 77)(52 78)(53 79)(54 80)(55 61)(56 62)(57 63)(58 64)(59 65)(60 66)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,30)(39,40)(41,45)(42,44)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,80), (1,77,25,56,11,67,35,46)(2,78,26,57,12,68,36,47)(3,79,27,58,13,69,37,48)(4,80,28,59,14,70,38,49)(5,61,29,60,15,71,39,50)(6,62,30,41,16,72,40,51)(7,63,31,42,17,73,21,52)(8,64,32,43,18,74,22,53)(9,65,33,44,19,75,23,54)(10,66,34,45,20,76,24,55), (41,67)(42,68)(43,69)(44,70)(45,71)(46,72)(47,73)(48,74)(49,75)(50,76)(51,77)(52,78)(53,79)(54,80)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,30)(39,40)(41,45)(42,44)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,80), (1,77,25,56,11,67,35,46)(2,78,26,57,12,68,36,47)(3,79,27,58,13,69,37,48)(4,80,28,59,14,70,38,49)(5,61,29,60,15,71,39,50)(6,62,30,41,16,72,40,51)(7,63,31,42,17,73,21,52)(8,64,32,43,18,74,22,53)(9,65,33,44,19,75,23,54)(10,66,34,45,20,76,24,55), (41,67)(42,68)(43,69)(44,70)(45,71)(46,72)(47,73)(48,74)(49,75)(50,76)(51,77)(52,78)(53,79)(54,80)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,38),(22,37),(23,36),(24,35),(25,34),(26,33),(27,32),(28,31),(29,30),(39,40),(41,45),(42,44),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,54),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70),(78,80)], [(1,77,25,56,11,67,35,46),(2,78,26,57,12,68,36,47),(3,79,27,58,13,69,37,48),(4,80,28,59,14,70,38,49),(5,61,29,60,15,71,39,50),(6,62,30,41,16,72,40,51),(7,63,31,42,17,73,21,52),(8,64,32,43,18,74,22,53),(9,65,33,44,19,75,23,54),(10,66,34,45,20,76,24,55)], [(41,67),(42,68),(43,69),(44,70),(45,71),(46,72),(47,73),(48,74),(49,75),(50,76),(51,77),(52,78),(53,79),(54,80),(55,61),(56,62),(57,63),(58,64),(59,65),(60,66)]])
59 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | 20J | 20K | 20L | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | 2 | 4 | 40 | 40 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
59 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | SD16 | D10 | D10 | D20 | D20 | C40⋊C2 | C8⋊C22 | D4×D5 | C8⋊D10 |
kernel | D20.31D4 | D20⋊5C4 | C5×C22⋊C8 | C2×C40⋊C2 | C20.48D4 | C22×D20 | D20 | C2×C20 | C22×C10 | C22⋊C8 | C2×C10 | C2×C8 | C22×C4 | C2×C4 | C23 | C22 | C10 | C4 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 1 | 1 | 2 | 4 | 4 | 2 | 4 | 4 | 16 | 1 | 4 | 4 |
Matrix representation of D20.31D4 ►in GL6(𝔽41)
10 | 5 | 0 | 0 | 0 | 0 |
29 | 31 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 1 | 0 | 0 |
0 | 0 | 5 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
10 | 5 | 0 | 0 | 0 | 0 |
13 | 31 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 24 | 1 |
29 | 7 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 22 | 36 |
0 | 0 | 0 | 0 | 31 | 19 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 17 | 40 |
G:=sub<GL(6,GF(41))| [10,29,0,0,0,0,5,31,0,0,0,0,0,0,35,5,0,0,0,0,1,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[10,13,0,0,0,0,5,31,0,0,0,0,0,0,40,0,0,0,0,0,40,1,0,0,0,0,0,0,40,24,0,0,0,0,0,1],[29,16,0,0,0,0,7,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,22,31,0,0,0,0,36,19],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,17,0,0,0,0,0,40] >;
D20.31D4 in GAP, Magma, Sage, TeX
D_{20}._{31}D_4
% in TeX
G:=Group("D20.31D4");
// GroupNames label
G:=SmallGroup(320,358);
// by ID
G=gap.SmallGroup(320,358);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,219,58,1123,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^20=b^2=d^2=1,c^4=a^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^15*b,b*d=d*b,d*c*d=a^15*c^3>;
// generators/relations