Copied to
clipboard

?

G = D4.13D20order 320 = 26·5

3rd non-split extension by D4 of D20 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.13D20, Q8.13D20, C20.63C24, C40.12C23, D40.14C22, D20.26C23, M4(2).28D10, Dic20.10C22, Dic10.26C23, C8○D45D5, C51(Q8○D8), (C5×D4).25D4, C20.75(C2×D4), C4.29(C2×D20), (C5×Q8).25D4, C4○D4.40D10, (C2×C8).102D10, D407C213C2, C22.5(C2×D20), C8.54(C22×D5), C4.60(C23×D5), (C2×Dic20)⋊15C2, C8.D1012C2, (C2×C40).70C22, C40⋊C2.2C22, C2.32(C22×D20), C10.30(C22×D4), D4.10D104C2, (C2×C20).517C23, C4○D20.27C22, (C5×M4(2)).30C22, (C2×Dic10).200C22, (C5×C8○D4)⋊5C2, (C2×C10).10(C2×D4), (C5×C4○D4).47C22, (C2×C4).228(C22×D5), SmallGroup(320,1425)

Series: Derived Chief Lower central Upper central

C1C20 — D4.13D20
C1C5C10C20D20C4○D20D4.10D10 — D4.13D20
C5C10C20 — D4.13D20

Subgroups: 902 in 248 conjugacy classes, 107 normal (16 characteristic)
C1, C2, C2 [×5], C4, C4 [×3], C4 [×6], C22 [×3], C22 [×2], C5, C8, C8 [×3], C2×C4 [×3], C2×C4 [×12], D4 [×3], D4 [×8], Q8, Q8 [×12], D5 [×2], C10, C10 [×3], C2×C8 [×3], M4(2) [×3], D8, SD16 [×6], Q16 [×9], C2×Q8 [×8], C4○D4, C4○D4 [×12], Dic5 [×6], C20, C20 [×3], D10 [×2], C2×C10 [×3], C8○D4, C2×Q16 [×3], C4○D8 [×3], C8.C22 [×6], 2- (1+4) [×2], C40, C40 [×3], Dic10 [×6], Dic10 [×6], C4×D5 [×6], D20 [×2], C2×Dic5 [×6], C5⋊D4 [×6], C2×C20 [×3], C5×D4 [×3], C5×Q8, Q8○D8, C40⋊C2 [×6], D40, Dic20 [×9], C2×C40 [×3], C5×M4(2) [×3], C2×Dic10 [×6], C4○D20 [×6], D42D5 [×6], Q8×D5 [×2], C5×C4○D4, D407C2 [×3], C2×Dic20 [×3], C8.D10 [×6], C5×C8○D4, D4.10D10 [×2], D4.13D20

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, D20 [×4], C22×D5 [×7], Q8○D8, C2×D20 [×6], C23×D5, C22×D20, D4.13D20

Generators and relations
 G = < a,b,c,d | a4=b2=d2=1, c20=a2, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=a2c19 >

Smallest permutation representation
On 160 points
Generators in S160
(1 46 21 66)(2 47 22 67)(3 48 23 68)(4 49 24 69)(5 50 25 70)(6 51 26 71)(7 52 27 72)(8 53 28 73)(9 54 29 74)(10 55 30 75)(11 56 31 76)(12 57 32 77)(13 58 33 78)(14 59 34 79)(15 60 35 80)(16 61 36 41)(17 62 37 42)(18 63 38 43)(19 64 39 44)(20 65 40 45)(81 160 101 140)(82 121 102 141)(83 122 103 142)(84 123 104 143)(85 124 105 144)(86 125 106 145)(87 126 107 146)(88 127 108 147)(89 128 109 148)(90 129 110 149)(91 130 111 150)(92 131 112 151)(93 132 113 152)(94 133 114 153)(95 134 115 154)(96 135 116 155)(97 136 117 156)(98 137 118 157)(99 138 119 158)(100 139 120 159)
(1 128)(2 129)(3 130)(4 131)(5 132)(6 133)(7 134)(8 135)(9 136)(10 137)(11 138)(12 139)(13 140)(14 141)(15 142)(16 143)(17 144)(18 145)(19 146)(20 147)(21 148)(22 149)(23 150)(24 151)(25 152)(26 153)(27 154)(28 155)(29 156)(30 157)(31 158)(32 159)(33 160)(34 121)(35 122)(36 123)(37 124)(38 125)(39 126)(40 127)(41 84)(42 85)(43 86)(44 87)(45 88)(46 89)(47 90)(48 91)(49 92)(50 93)(51 94)(52 95)(53 96)(54 97)(55 98)(56 99)(57 100)(58 101)(59 102)(60 103)(61 104)(62 105)(63 106)(64 107)(65 108)(66 109)(67 110)(68 111)(69 112)(70 113)(71 114)(72 115)(73 116)(74 117)(75 118)(76 119)(77 120)(78 81)(79 82)(80 83)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(41 50)(42 49)(43 48)(44 47)(45 46)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)(61 70)(62 69)(63 68)(64 67)(65 66)(81 116)(82 115)(83 114)(84 113)(85 112)(86 111)(87 110)(88 109)(89 108)(90 107)(91 106)(92 105)(93 104)(94 103)(95 102)(96 101)(97 100)(98 99)(117 120)(118 119)(121 154)(122 153)(123 152)(124 151)(125 150)(126 149)(127 148)(128 147)(129 146)(130 145)(131 144)(132 143)(133 142)(134 141)(135 140)(136 139)(137 138)(155 160)(156 159)(157 158)

G:=sub<Sym(160)| (1,46,21,66)(2,47,22,67)(3,48,23,68)(4,49,24,69)(5,50,25,70)(6,51,26,71)(7,52,27,72)(8,53,28,73)(9,54,29,74)(10,55,30,75)(11,56,31,76)(12,57,32,77)(13,58,33,78)(14,59,34,79)(15,60,35,80)(16,61,36,41)(17,62,37,42)(18,63,38,43)(19,64,39,44)(20,65,40,45)(81,160,101,140)(82,121,102,141)(83,122,103,142)(84,123,104,143)(85,124,105,144)(86,125,106,145)(87,126,107,146)(88,127,108,147)(89,128,109,148)(90,129,110,149)(91,130,111,150)(92,131,112,151)(93,132,113,152)(94,133,114,153)(95,134,115,154)(96,135,116,155)(97,136,117,156)(98,137,118,157)(99,138,119,158)(100,139,120,159), (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,151)(25,152)(26,153)(27,154)(28,155)(29,156)(30,157)(31,158)(32,159)(33,160)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,81)(79,82)(80,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,50)(42,49)(43,48)(44,47)(45,46)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,70)(62,69)(63,68)(64,67)(65,66)(81,116)(82,115)(83,114)(84,113)(85,112)(86,111)(87,110)(88,109)(89,108)(90,107)(91,106)(92,105)(93,104)(94,103)(95,102)(96,101)(97,100)(98,99)(117,120)(118,119)(121,154)(122,153)(123,152)(124,151)(125,150)(126,149)(127,148)(128,147)(129,146)(130,145)(131,144)(132,143)(133,142)(134,141)(135,140)(136,139)(137,138)(155,160)(156,159)(157,158)>;

G:=Group( (1,46,21,66)(2,47,22,67)(3,48,23,68)(4,49,24,69)(5,50,25,70)(6,51,26,71)(7,52,27,72)(8,53,28,73)(9,54,29,74)(10,55,30,75)(11,56,31,76)(12,57,32,77)(13,58,33,78)(14,59,34,79)(15,60,35,80)(16,61,36,41)(17,62,37,42)(18,63,38,43)(19,64,39,44)(20,65,40,45)(81,160,101,140)(82,121,102,141)(83,122,103,142)(84,123,104,143)(85,124,105,144)(86,125,106,145)(87,126,107,146)(88,127,108,147)(89,128,109,148)(90,129,110,149)(91,130,111,150)(92,131,112,151)(93,132,113,152)(94,133,114,153)(95,134,115,154)(96,135,116,155)(97,136,117,156)(98,137,118,157)(99,138,119,158)(100,139,120,159), (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,145)(19,146)(20,147)(21,148)(22,149)(23,150)(24,151)(25,152)(26,153)(27,154)(28,155)(29,156)(30,157)(31,158)(32,159)(33,160)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,81)(79,82)(80,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,50)(42,49)(43,48)(44,47)(45,46)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,70)(62,69)(63,68)(64,67)(65,66)(81,116)(82,115)(83,114)(84,113)(85,112)(86,111)(87,110)(88,109)(89,108)(90,107)(91,106)(92,105)(93,104)(94,103)(95,102)(96,101)(97,100)(98,99)(117,120)(118,119)(121,154)(122,153)(123,152)(124,151)(125,150)(126,149)(127,148)(128,147)(129,146)(130,145)(131,144)(132,143)(133,142)(134,141)(135,140)(136,139)(137,138)(155,160)(156,159)(157,158) );

G=PermutationGroup([(1,46,21,66),(2,47,22,67),(3,48,23,68),(4,49,24,69),(5,50,25,70),(6,51,26,71),(7,52,27,72),(8,53,28,73),(9,54,29,74),(10,55,30,75),(11,56,31,76),(12,57,32,77),(13,58,33,78),(14,59,34,79),(15,60,35,80),(16,61,36,41),(17,62,37,42),(18,63,38,43),(19,64,39,44),(20,65,40,45),(81,160,101,140),(82,121,102,141),(83,122,103,142),(84,123,104,143),(85,124,105,144),(86,125,106,145),(87,126,107,146),(88,127,108,147),(89,128,109,148),(90,129,110,149),(91,130,111,150),(92,131,112,151),(93,132,113,152),(94,133,114,153),(95,134,115,154),(96,135,116,155),(97,136,117,156),(98,137,118,157),(99,138,119,158),(100,139,120,159)], [(1,128),(2,129),(3,130),(4,131),(5,132),(6,133),(7,134),(8,135),(9,136),(10,137),(11,138),(12,139),(13,140),(14,141),(15,142),(16,143),(17,144),(18,145),(19,146),(20,147),(21,148),(22,149),(23,150),(24,151),(25,152),(26,153),(27,154),(28,155),(29,156),(30,157),(31,158),(32,159),(33,160),(34,121),(35,122),(36,123),(37,124),(38,125),(39,126),(40,127),(41,84),(42,85),(43,86),(44,87),(45,88),(46,89),(47,90),(48,91),(49,92),(50,93),(51,94),(52,95),(53,96),(54,97),(55,98),(56,99),(57,100),(58,101),(59,102),(60,103),(61,104),(62,105),(63,106),(64,107),(65,108),(66,109),(67,110),(68,111),(69,112),(70,113),(71,114),(72,115),(73,116),(74,117),(75,118),(76,119),(77,120),(78,81),(79,82),(80,83)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(41,50),(42,49),(43,48),(44,47),(45,46),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71),(61,70),(62,69),(63,68),(64,67),(65,66),(81,116),(82,115),(83,114),(84,113),(85,112),(86,111),(87,110),(88,109),(89,108),(90,107),(91,106),(92,105),(93,104),(94,103),(95,102),(96,101),(97,100),(98,99),(117,120),(118,119),(121,154),(122,153),(123,152),(124,151),(125,150),(126,149),(127,148),(128,147),(129,146),(130,145),(131,144),(132,143),(133,142),(134,141),(135,140),(136,139),(137,138),(155,160),(156,159),(157,158)])

Matrix representation G ⊆ GL4(𝔽41) generated by

0010
0001
40000
04000
,
33141525
2781626
1525827
16261433
,
35300
381500
00353
003815
,
203900
152100
002039
001521
G:=sub<GL(4,GF(41))| [0,0,40,0,0,0,0,40,1,0,0,0,0,1,0,0],[33,27,15,16,14,8,25,26,15,16,8,14,25,26,27,33],[35,38,0,0,3,15,0,0,0,0,35,38,0,0,3,15],[20,15,0,0,39,21,0,0,0,0,20,15,0,0,39,21] >;

62 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E···4J5A5B8A8B8C8D8E10A10B10C···10H20A20B20C20D20E···20J40A···40H40I···40T
order122222244444···45588888101010···102020202020···2040···4040···40
size112222020222220···202222444224···422224···42···24···4

62 irreducible representations

dim1111112222222244
type++++++++++++++--
imageC1C2C2C2C2C2D4D4D5D10D10D10D20D20Q8○D8D4.13D20
kernelD4.13D20D407C2C2×Dic20C8.D10C5×C8○D4D4.10D10C5×D4C5×Q8C8○D4C2×C8M4(2)C4○D4D4Q8C5C1
# reps13361231266212428

In GAP, Magma, Sage, TeX

D_4._{13}D_{20}
% in TeX

G:=Group("D4.13D20");
// GroupNames label

G:=SmallGroup(320,1425);
// by ID

G=gap.SmallGroup(320,1425);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,184,675,192,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=d^2=1,c^20=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=a^2*c^19>;
// generators/relations

׿
×
𝔽