Copied to
clipboard

G = Q32⋊D5order 320 = 26·5

2nd semidirect product of Q32 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q322D5, C16.3D10, D10.17D8, Q16.4D10, C40.21C23, C80.10C22, Dic5.19D8, D40.4C22, Dic20.6C22, C4.9(D4×D5), (C5×Q32)⋊4C2, (D5×Q16)⋊5C2, C5⋊Q324C2, C16⋊D54C2, C80⋊C24C2, C2.24(D5×D8), C52C8.5D4, (C4×D5).10D4, C20.15(C2×D4), C10.40(C2×D8), C5⋊SD323C2, C53(Q32⋊C2), (C8×D5).6C22, C8.27(C22×D5), Q8.D10.1C2, C52C16.2C22, (C5×Q16).5C22, SmallGroup(320,545)

Series: Derived Chief Lower central Upper central

C1C40 — Q32⋊D5
C1C5C10C20C40C8×D5D5×Q16 — Q32⋊D5
C5C10C20C40 — Q32⋊D5
C1C2C4C8Q32

Generators and relations for Q32⋊D5
 G = < a,b,c,d | a16=c5=d2=1, b2=a8, bab-1=a-1, ac=ca, dad=a9, bc=cb, dbd=a8b, dcd=c-1 >

Subgroups: 406 in 82 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, Q8, D5, C10, C16, C16, C2×C8, D8, SD16, Q16, Q16, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, M5(2), SD32, Q32, Q32, C2×Q16, C4○D8, C52C8, C40, Dic10, C4×D5, C4×D5, D20, C5×Q8, Q32⋊C2, C52C16, C80, C8×D5, D40, Dic20, Q8⋊D5, C5⋊Q16, C5×Q16, Q8×D5, Q82D5, C80⋊C2, C16⋊D5, C5⋊SD32, C5⋊Q32, C5×Q32, D5×Q16, Q8.D10, Q32⋊D5
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, C22×D5, Q32⋊C2, D4×D5, D5×D8, Q32⋊D5

Smallest permutation representation of Q32⋊D5
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 80 9 72)(2 79 10 71)(3 78 11 70)(4 77 12 69)(5 76 13 68)(6 75 14 67)(7 74 15 66)(8 73 16 65)(17 39 25 47)(18 38 26 46)(19 37 27 45)(20 36 28 44)(21 35 29 43)(22 34 30 42)(23 33 31 41)(24 48 32 40)(49 82 57 90)(50 81 58 89)(51 96 59 88)(52 95 60 87)(53 94 61 86)(54 93 62 85)(55 92 63 84)(56 91 64 83)(97 140 105 132)(98 139 106 131)(99 138 107 130)(100 137 108 129)(101 136 109 144)(102 135 110 143)(103 134 111 142)(104 133 112 141)(113 149 121 157)(114 148 122 156)(115 147 123 155)(116 146 124 154)(117 145 125 153)(118 160 126 152)(119 159 127 151)(120 158 128 150)
(1 62 23 134 114)(2 63 24 135 115)(3 64 25 136 116)(4 49 26 137 117)(5 50 27 138 118)(6 51 28 139 119)(7 52 29 140 120)(8 53 30 141 121)(9 54 31 142 122)(10 55 32 143 123)(11 56 17 144 124)(12 57 18 129 125)(13 58 19 130 126)(14 59 20 131 127)(15 60 21 132 128)(16 61 22 133 113)(33 111 148 80 85)(34 112 149 65 86)(35 97 150 66 87)(36 98 151 67 88)(37 99 152 68 89)(38 100 153 69 90)(39 101 154 70 91)(40 102 155 71 92)(41 103 156 72 93)(42 104 157 73 94)(43 105 158 74 95)(44 106 159 75 96)(45 107 160 76 81)(46 108 145 77 82)(47 109 146 78 83)(48 110 147 79 84)
(1 156)(2 149)(3 158)(4 151)(5 160)(6 153)(7 146)(8 155)(9 148)(10 157)(11 150)(12 159)(13 152)(14 145)(15 154)(16 147)(17 35)(18 44)(19 37)(20 46)(21 39)(22 48)(23 41)(24 34)(25 43)(26 36)(27 45)(28 38)(29 47)(30 40)(31 33)(32 42)(49 98)(50 107)(51 100)(52 109)(53 102)(54 111)(55 104)(56 97)(57 106)(58 99)(59 108)(60 101)(61 110)(62 103)(63 112)(64 105)(65 115)(66 124)(67 117)(68 126)(69 119)(70 128)(71 121)(72 114)(73 123)(74 116)(75 125)(76 118)(77 127)(78 120)(79 113)(80 122)(81 138)(82 131)(83 140)(84 133)(85 142)(86 135)(87 144)(88 137)(89 130)(90 139)(91 132)(92 141)(93 134)(94 143)(95 136)(96 129)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,80,9,72)(2,79,10,71)(3,78,11,70)(4,77,12,69)(5,76,13,68)(6,75,14,67)(7,74,15,66)(8,73,16,65)(17,39,25,47)(18,38,26,46)(19,37,27,45)(20,36,28,44)(21,35,29,43)(22,34,30,42)(23,33,31,41)(24,48,32,40)(49,82,57,90)(50,81,58,89)(51,96,59,88)(52,95,60,87)(53,94,61,86)(54,93,62,85)(55,92,63,84)(56,91,64,83)(97,140,105,132)(98,139,106,131)(99,138,107,130)(100,137,108,129)(101,136,109,144)(102,135,110,143)(103,134,111,142)(104,133,112,141)(113,149,121,157)(114,148,122,156)(115,147,123,155)(116,146,124,154)(117,145,125,153)(118,160,126,152)(119,159,127,151)(120,158,128,150), (1,62,23,134,114)(2,63,24,135,115)(3,64,25,136,116)(4,49,26,137,117)(5,50,27,138,118)(6,51,28,139,119)(7,52,29,140,120)(8,53,30,141,121)(9,54,31,142,122)(10,55,32,143,123)(11,56,17,144,124)(12,57,18,129,125)(13,58,19,130,126)(14,59,20,131,127)(15,60,21,132,128)(16,61,22,133,113)(33,111,148,80,85)(34,112,149,65,86)(35,97,150,66,87)(36,98,151,67,88)(37,99,152,68,89)(38,100,153,69,90)(39,101,154,70,91)(40,102,155,71,92)(41,103,156,72,93)(42,104,157,73,94)(43,105,158,74,95)(44,106,159,75,96)(45,107,160,76,81)(46,108,145,77,82)(47,109,146,78,83)(48,110,147,79,84), (1,156)(2,149)(3,158)(4,151)(5,160)(6,153)(7,146)(8,155)(9,148)(10,157)(11,150)(12,159)(13,152)(14,145)(15,154)(16,147)(17,35)(18,44)(19,37)(20,46)(21,39)(22,48)(23,41)(24,34)(25,43)(26,36)(27,45)(28,38)(29,47)(30,40)(31,33)(32,42)(49,98)(50,107)(51,100)(52,109)(53,102)(54,111)(55,104)(56,97)(57,106)(58,99)(59,108)(60,101)(61,110)(62,103)(63,112)(64,105)(65,115)(66,124)(67,117)(68,126)(69,119)(70,128)(71,121)(72,114)(73,123)(74,116)(75,125)(76,118)(77,127)(78,120)(79,113)(80,122)(81,138)(82,131)(83,140)(84,133)(85,142)(86,135)(87,144)(88,137)(89,130)(90,139)(91,132)(92,141)(93,134)(94,143)(95,136)(96,129)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,80,9,72)(2,79,10,71)(3,78,11,70)(4,77,12,69)(5,76,13,68)(6,75,14,67)(7,74,15,66)(8,73,16,65)(17,39,25,47)(18,38,26,46)(19,37,27,45)(20,36,28,44)(21,35,29,43)(22,34,30,42)(23,33,31,41)(24,48,32,40)(49,82,57,90)(50,81,58,89)(51,96,59,88)(52,95,60,87)(53,94,61,86)(54,93,62,85)(55,92,63,84)(56,91,64,83)(97,140,105,132)(98,139,106,131)(99,138,107,130)(100,137,108,129)(101,136,109,144)(102,135,110,143)(103,134,111,142)(104,133,112,141)(113,149,121,157)(114,148,122,156)(115,147,123,155)(116,146,124,154)(117,145,125,153)(118,160,126,152)(119,159,127,151)(120,158,128,150), (1,62,23,134,114)(2,63,24,135,115)(3,64,25,136,116)(4,49,26,137,117)(5,50,27,138,118)(6,51,28,139,119)(7,52,29,140,120)(8,53,30,141,121)(9,54,31,142,122)(10,55,32,143,123)(11,56,17,144,124)(12,57,18,129,125)(13,58,19,130,126)(14,59,20,131,127)(15,60,21,132,128)(16,61,22,133,113)(33,111,148,80,85)(34,112,149,65,86)(35,97,150,66,87)(36,98,151,67,88)(37,99,152,68,89)(38,100,153,69,90)(39,101,154,70,91)(40,102,155,71,92)(41,103,156,72,93)(42,104,157,73,94)(43,105,158,74,95)(44,106,159,75,96)(45,107,160,76,81)(46,108,145,77,82)(47,109,146,78,83)(48,110,147,79,84), (1,156)(2,149)(3,158)(4,151)(5,160)(6,153)(7,146)(8,155)(9,148)(10,157)(11,150)(12,159)(13,152)(14,145)(15,154)(16,147)(17,35)(18,44)(19,37)(20,46)(21,39)(22,48)(23,41)(24,34)(25,43)(26,36)(27,45)(28,38)(29,47)(30,40)(31,33)(32,42)(49,98)(50,107)(51,100)(52,109)(53,102)(54,111)(55,104)(56,97)(57,106)(58,99)(59,108)(60,101)(61,110)(62,103)(63,112)(64,105)(65,115)(66,124)(67,117)(68,126)(69,119)(70,128)(71,121)(72,114)(73,123)(74,116)(75,125)(76,118)(77,127)(78,120)(79,113)(80,122)(81,138)(82,131)(83,140)(84,133)(85,142)(86,135)(87,144)(88,137)(89,130)(90,139)(91,132)(92,141)(93,134)(94,143)(95,136)(96,129) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,80,9,72),(2,79,10,71),(3,78,11,70),(4,77,12,69),(5,76,13,68),(6,75,14,67),(7,74,15,66),(8,73,16,65),(17,39,25,47),(18,38,26,46),(19,37,27,45),(20,36,28,44),(21,35,29,43),(22,34,30,42),(23,33,31,41),(24,48,32,40),(49,82,57,90),(50,81,58,89),(51,96,59,88),(52,95,60,87),(53,94,61,86),(54,93,62,85),(55,92,63,84),(56,91,64,83),(97,140,105,132),(98,139,106,131),(99,138,107,130),(100,137,108,129),(101,136,109,144),(102,135,110,143),(103,134,111,142),(104,133,112,141),(113,149,121,157),(114,148,122,156),(115,147,123,155),(116,146,124,154),(117,145,125,153),(118,160,126,152),(119,159,127,151),(120,158,128,150)], [(1,62,23,134,114),(2,63,24,135,115),(3,64,25,136,116),(4,49,26,137,117),(5,50,27,138,118),(6,51,28,139,119),(7,52,29,140,120),(8,53,30,141,121),(9,54,31,142,122),(10,55,32,143,123),(11,56,17,144,124),(12,57,18,129,125),(13,58,19,130,126),(14,59,20,131,127),(15,60,21,132,128),(16,61,22,133,113),(33,111,148,80,85),(34,112,149,65,86),(35,97,150,66,87),(36,98,151,67,88),(37,99,152,68,89),(38,100,153,69,90),(39,101,154,70,91),(40,102,155,71,92),(41,103,156,72,93),(42,104,157,73,94),(43,105,158,74,95),(44,106,159,75,96),(45,107,160,76,81),(46,108,145,77,82),(47,109,146,78,83),(48,110,147,79,84)], [(1,156),(2,149),(3,158),(4,151),(5,160),(6,153),(7,146),(8,155),(9,148),(10,157),(11,150),(12,159),(13,152),(14,145),(15,154),(16,147),(17,35),(18,44),(19,37),(20,46),(21,39),(22,48),(23,41),(24,34),(25,43),(26,36),(27,45),(28,38),(29,47),(30,40),(31,33),(32,42),(49,98),(50,107),(51,100),(52,109),(53,102),(54,111),(55,104),(56,97),(57,106),(58,99),(59,108),(60,101),(61,110),(62,103),(63,112),(64,105),(65,115),(66,124),(67,117),(68,126),(69,119),(70,128),(71,121),(72,114),(73,123),(74,116),(75,125),(76,118),(77,127),(78,120),(79,113),(80,122),(81,138),(82,131),(83,140),(84,133),(85,142),(86,135),(87,144),(88,137),(89,130),(90,139),(91,132),(92,141),(93,134),(94,143),(95,136),(96,129)]])

38 conjugacy classes

class 1 2A2B2C4A4B4C4D4E5A5B8A8B8C10A10B16A16B16C16D20A20B20C20D20E20F40A40B40C40D80A···80H
order122244444558881010161616162020202020204040404080···80
size111040288104022222022442020441616161644444···4

38 irreducible representations

dim1111111122222224444
type+++++++++++++++-++
imageC1C2C2C2C2C2C2C2D4D4D5D8D8D10D10Q32⋊C2D4×D5D5×D8Q32⋊D5
kernelQ32⋊D5C80⋊C2C16⋊D5C5⋊SD32C5⋊Q32C5×Q32D5×Q16Q8.D10C52C8C4×D5Q32Dic5D10C16Q16C5C4C2C1
# reps1111111111222242248

Matrix representation of Q32⋊D5 in GL4(𝔽241) generated by

47173124118
68194123117
11712347173
11812468194
,
582341450
71830145
14501837
014523458
,
0100
2405100
0001
0024051
,
71830145
582341450
0967183
96058234
G:=sub<GL(4,GF(241))| [47,68,117,118,173,194,123,124,124,123,47,68,118,117,173,194],[58,7,145,0,234,183,0,145,145,0,183,234,0,145,7,58],[0,240,0,0,1,51,0,0,0,0,0,240,0,0,1,51],[7,58,0,96,183,234,96,0,0,145,7,58,145,0,183,234] >;

Q32⋊D5 in GAP, Magma, Sage, TeX

Q_{32}\rtimes D_5
% in TeX

G:=Group("Q32:D5");
// GroupNames label

G:=SmallGroup(320,545);
// by ID

G=gap.SmallGroup(320,545);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,135,184,346,185,192,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^16=c^5=d^2=1,b^2=a^8,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^9,b*c=c*b,d*b*d=a^8*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽