Copied to
clipboard

?

G = C10×D42S3order 480 = 25·3·5

Direct product of C10 and D42S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10×D42S3, C30.89C24, C60.236C23, (C6×D4)⋊6C10, (C5×D4)⋊27D6, D45(S3×C10), (D4×C10)⋊17S3, (D4×C30)⋊20C2, C3016(C4○D4), Dic67(C2×C10), (C2×C20).370D6, C6.6(C23×C10), (S3×C20)⋊23C22, (C10×Dic6)⋊28C2, (C2×Dic6)⋊12C10, (D4×C15)⋊37C22, C23.24(S3×C10), C10.74(S3×C23), D6.2(C22×C10), (C22×C10).95D6, (S3×C10).37C23, C20.209(C22×S3), C12.20(C22×C10), (C2×C60).373C22, (C2×C30).445C23, (C22×Dic3)⋊8C10, (C5×Dic6)⋊34C22, (C10×Dic3)⋊36C22, Dic3.3(C22×C10), (C5×Dic3).39C23, (C22×C30).128C22, (S3×C2×C4)⋊4C10, C62(C5×C4○D4), C32(C10×C4○D4), (S3×C2×C20)⋊14C2, (C2×D4)⋊8(C5×S3), C1525(C2×C4○D4), C4.20(S3×C2×C10), (C4×S3)⋊4(C2×C10), (C3×D4)⋊6(C2×C10), C3⋊D42(C2×C10), C22.1(S3×C2×C10), C2.7(S3×C22×C10), (C2×C3⋊D4)⋊10C10, (C10×C3⋊D4)⋊25C2, (C2×C4).60(S3×C10), (Dic3×C2×C10)⋊19C2, (C2×C12).47(C2×C10), (C2×Dic3)⋊9(C2×C10), (C5×C3⋊D4)⋊18C22, (C2×C6).1(C22×C10), (S3×C2×C10).121C22, (C2×C10).21(C22×S3), (C22×C6).23(C2×C10), (C22×S3).30(C2×C10), SmallGroup(480,1155)

Series: Derived Chief Lower central Upper central

C1C6 — C10×D42S3
C1C3C6C30S3×C10S3×C2×C10S3×C2×C20 — C10×D42S3
C3C6 — C10×D42S3

Subgroups: 612 in 328 conjugacy classes, 178 normal (30 characteristic)
C1, C2, C2 [×2], C2 [×6], C3, C4 [×2], C4 [×6], C22, C22 [×4], C22 [×8], C5, S3 [×2], C6, C6 [×2], C6 [×4], C2×C4, C2×C4 [×15], D4 [×4], D4 [×8], Q8 [×4], C23 [×2], C23, C10, C10 [×2], C10 [×6], Dic3 [×6], C12 [×2], D6 [×2], D6 [×2], C2×C6, C2×C6 [×4], C2×C6 [×4], C15, C22×C4 [×3], C2×D4, C2×D4 [×2], C2×Q8, C4○D4 [×8], C20 [×2], C20 [×6], C2×C10, C2×C10 [×4], C2×C10 [×8], Dic6 [×4], C4×S3 [×4], C2×Dic3, C2×Dic3 [×10], C3⋊D4 [×8], C2×C12, C3×D4 [×4], C22×S3, C22×C6 [×2], C5×S3 [×2], C30, C30 [×2], C30 [×4], C2×C4○D4, C2×C20, C2×C20 [×15], C5×D4 [×4], C5×D4 [×8], C5×Q8 [×4], C22×C10 [×2], C22×C10, C2×Dic6, S3×C2×C4, D42S3 [×8], C22×Dic3 [×2], C2×C3⋊D4 [×2], C6×D4, C5×Dic3 [×6], C60 [×2], S3×C10 [×2], S3×C10 [×2], C2×C30, C2×C30 [×4], C2×C30 [×4], C22×C20 [×3], D4×C10, D4×C10 [×2], Q8×C10, C5×C4○D4 [×8], C2×D42S3, C5×Dic6 [×4], S3×C20 [×4], C10×Dic3, C10×Dic3 [×10], C5×C3⋊D4 [×8], C2×C60, D4×C15 [×4], S3×C2×C10, C22×C30 [×2], C10×C4○D4, C10×Dic6, S3×C2×C20, C5×D42S3 [×8], Dic3×C2×C10 [×2], C10×C3⋊D4 [×2], D4×C30, C10×D42S3

Quotients:
C1, C2 [×15], C22 [×35], C5, S3, C23 [×15], C10 [×15], D6 [×7], C4○D4 [×2], C24, C2×C10 [×35], C22×S3 [×7], C5×S3, C2×C4○D4, C22×C10 [×15], D42S3 [×2], S3×C23, S3×C10 [×7], C5×C4○D4 [×2], C23×C10, C2×D42S3, S3×C2×C10 [×7], C10×C4○D4, C5×D42S3 [×2], S3×C22×C10, C10×D42S3

Generators and relations
 G = < a,b,c,d,e | a10=b4=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Smallest permutation representation
On 240 points
Generators in S240
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170)(171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190)(191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220)(221 222 223 224 225 226 227 228 229 230)(231 232 233 234 235 236 237 238 239 240)
(1 153 93 163)(2 154 94 164)(3 155 95 165)(4 156 96 166)(5 157 97 167)(6 158 98 168)(7 159 99 169)(8 160 100 170)(9 151 91 161)(10 152 92 162)(11 230 29 220)(12 221 30 211)(13 222 21 212)(14 223 22 213)(15 224 23 214)(16 225 24 215)(17 226 25 216)(18 227 26 217)(19 228 27 218)(20 229 28 219)(31 190 53 202)(32 181 54 203)(33 182 55 204)(34 183 56 205)(35 184 57 206)(36 185 58 207)(37 186 59 208)(38 187 60 209)(39 188 51 210)(40 189 52 201)(41 200 237 177)(42 191 238 178)(43 192 239 179)(44 193 240 180)(45 194 231 171)(46 195 232 172)(47 196 233 173)(48 197 234 174)(49 198 235 175)(50 199 236 176)(61 143 83 121)(62 144 84 122)(63 145 85 123)(64 146 86 124)(65 147 87 125)(66 148 88 126)(67 149 89 127)(68 150 90 128)(69 141 81 129)(70 142 82 130)(71 118 107 131)(72 119 108 132)(73 120 109 133)(74 111 110 134)(75 112 101 135)(76 113 102 136)(77 114 103 137)(78 115 104 138)(79 116 105 139)(80 117 106 140)
(1 168)(2 169)(3 170)(4 161)(5 162)(6 163)(7 164)(8 165)(9 166)(10 167)(11 215)(12 216)(13 217)(14 218)(15 219)(16 220)(17 211)(18 212)(19 213)(20 214)(21 227)(22 228)(23 229)(24 230)(25 221)(26 222)(27 223)(28 224)(29 225)(30 226)(31 207)(32 208)(33 209)(34 210)(35 201)(36 202)(37 203)(38 204)(39 205)(40 206)(41 172)(42 173)(43 174)(44 175)(45 176)(46 177)(47 178)(48 179)(49 180)(50 171)(51 183)(52 184)(53 185)(54 186)(55 187)(56 188)(57 189)(58 190)(59 181)(60 182)(61 126)(62 127)(63 128)(64 129)(65 130)(66 121)(67 122)(68 123)(69 124)(70 125)(71 136)(72 137)(73 138)(74 139)(75 140)(76 131)(77 132)(78 133)(79 134)(80 135)(81 146)(82 147)(83 148)(84 149)(85 150)(86 141)(87 142)(88 143)(89 144)(90 145)(91 156)(92 157)(93 158)(94 159)(95 160)(96 151)(97 152)(98 153)(99 154)(100 155)(101 117)(102 118)(103 119)(104 120)(105 111)(106 112)(107 113)(108 114)(109 115)(110 116)(191 233)(192 234)(193 235)(194 236)(195 237)(196 238)(197 239)(198 240)(199 231)(200 232)
(1 101 85)(2 102 86)(3 103 87)(4 104 88)(5 105 89)(6 106 90)(7 107 81)(8 108 82)(9 109 83)(10 110 84)(11 53 239)(12 54 240)(13 55 231)(14 56 232)(15 57 233)(16 58 234)(17 59 235)(18 60 236)(19 51 237)(20 52 238)(21 33 45)(22 34 46)(23 35 47)(24 36 48)(25 37 49)(26 38 50)(27 39 41)(28 40 42)(29 31 43)(30 32 44)(61 91 73)(62 92 74)(63 93 75)(64 94 76)(65 95 77)(66 96 78)(67 97 79)(68 98 80)(69 99 71)(70 100 72)(111 144 162)(112 145 163)(113 146 164)(114 147 165)(115 148 166)(116 149 167)(117 150 168)(118 141 169)(119 142 170)(120 143 161)(121 151 133)(122 152 134)(123 153 135)(124 154 136)(125 155 137)(126 156 138)(127 157 139)(128 158 140)(129 159 131)(130 160 132)(171 222 204)(172 223 205)(173 224 206)(174 225 207)(175 226 208)(176 227 209)(177 228 210)(178 229 201)(179 230 202)(180 221 203)(181 193 211)(182 194 212)(183 195 213)(184 196 214)(185 197 215)(186 198 216)(187 199 217)(188 200 218)(189 191 219)(190 192 220)
(1 223)(2 224)(3 225)(4 226)(5 227)(6 228)(7 229)(8 230)(9 221)(10 222)(11 170)(12 161)(13 162)(14 163)(15 164)(16 165)(17 166)(18 167)(19 168)(20 169)(21 152)(22 153)(23 154)(24 155)(25 156)(26 157)(27 158)(28 159)(29 160)(30 151)(31 130)(32 121)(33 122)(34 123)(35 124)(36 125)(37 126)(38 127)(39 128)(40 129)(41 140)(42 131)(43 132)(44 133)(45 134)(46 135)(47 136)(48 137)(49 138)(50 139)(51 150)(52 141)(53 142)(54 143)(55 144)(56 145)(57 146)(58 147)(59 148)(60 149)(61 181)(62 182)(63 183)(64 184)(65 185)(66 186)(67 187)(68 188)(69 189)(70 190)(71 191)(72 192)(73 193)(74 194)(75 195)(76 196)(77 197)(78 198)(79 199)(80 200)(81 201)(82 202)(83 203)(84 204)(85 205)(86 206)(87 207)(88 208)(89 209)(90 210)(91 211)(92 212)(93 213)(94 214)(95 215)(96 216)(97 217)(98 218)(99 219)(100 220)(101 172)(102 173)(103 174)(104 175)(105 176)(106 177)(107 178)(108 179)(109 180)(110 171)(111 231)(112 232)(113 233)(114 234)(115 235)(116 236)(117 237)(118 238)(119 239)(120 240)

G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170)(171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190)(191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230)(231,232,233,234,235,236,237,238,239,240), (1,153,93,163)(2,154,94,164)(3,155,95,165)(4,156,96,166)(5,157,97,167)(6,158,98,168)(7,159,99,169)(8,160,100,170)(9,151,91,161)(10,152,92,162)(11,230,29,220)(12,221,30,211)(13,222,21,212)(14,223,22,213)(15,224,23,214)(16,225,24,215)(17,226,25,216)(18,227,26,217)(19,228,27,218)(20,229,28,219)(31,190,53,202)(32,181,54,203)(33,182,55,204)(34,183,56,205)(35,184,57,206)(36,185,58,207)(37,186,59,208)(38,187,60,209)(39,188,51,210)(40,189,52,201)(41,200,237,177)(42,191,238,178)(43,192,239,179)(44,193,240,180)(45,194,231,171)(46,195,232,172)(47,196,233,173)(48,197,234,174)(49,198,235,175)(50,199,236,176)(61,143,83,121)(62,144,84,122)(63,145,85,123)(64,146,86,124)(65,147,87,125)(66,148,88,126)(67,149,89,127)(68,150,90,128)(69,141,81,129)(70,142,82,130)(71,118,107,131)(72,119,108,132)(73,120,109,133)(74,111,110,134)(75,112,101,135)(76,113,102,136)(77,114,103,137)(78,115,104,138)(79,116,105,139)(80,117,106,140), (1,168)(2,169)(3,170)(4,161)(5,162)(6,163)(7,164)(8,165)(9,166)(10,167)(11,215)(12,216)(13,217)(14,218)(15,219)(16,220)(17,211)(18,212)(19,213)(20,214)(21,227)(22,228)(23,229)(24,230)(25,221)(26,222)(27,223)(28,224)(29,225)(30,226)(31,207)(32,208)(33,209)(34,210)(35,201)(36,202)(37,203)(38,204)(39,205)(40,206)(41,172)(42,173)(43,174)(44,175)(45,176)(46,177)(47,178)(48,179)(49,180)(50,171)(51,183)(52,184)(53,185)(54,186)(55,187)(56,188)(57,189)(58,190)(59,181)(60,182)(61,126)(62,127)(63,128)(64,129)(65,130)(66,121)(67,122)(68,123)(69,124)(70,125)(71,136)(72,137)(73,138)(74,139)(75,140)(76,131)(77,132)(78,133)(79,134)(80,135)(81,146)(82,147)(83,148)(84,149)(85,150)(86,141)(87,142)(88,143)(89,144)(90,145)(91,156)(92,157)(93,158)(94,159)(95,160)(96,151)(97,152)(98,153)(99,154)(100,155)(101,117)(102,118)(103,119)(104,120)(105,111)(106,112)(107,113)(108,114)(109,115)(110,116)(191,233)(192,234)(193,235)(194,236)(195,237)(196,238)(197,239)(198,240)(199,231)(200,232), (1,101,85)(2,102,86)(3,103,87)(4,104,88)(5,105,89)(6,106,90)(7,107,81)(8,108,82)(9,109,83)(10,110,84)(11,53,239)(12,54,240)(13,55,231)(14,56,232)(15,57,233)(16,58,234)(17,59,235)(18,60,236)(19,51,237)(20,52,238)(21,33,45)(22,34,46)(23,35,47)(24,36,48)(25,37,49)(26,38,50)(27,39,41)(28,40,42)(29,31,43)(30,32,44)(61,91,73)(62,92,74)(63,93,75)(64,94,76)(65,95,77)(66,96,78)(67,97,79)(68,98,80)(69,99,71)(70,100,72)(111,144,162)(112,145,163)(113,146,164)(114,147,165)(115,148,166)(116,149,167)(117,150,168)(118,141,169)(119,142,170)(120,143,161)(121,151,133)(122,152,134)(123,153,135)(124,154,136)(125,155,137)(126,156,138)(127,157,139)(128,158,140)(129,159,131)(130,160,132)(171,222,204)(172,223,205)(173,224,206)(174,225,207)(175,226,208)(176,227,209)(177,228,210)(178,229,201)(179,230,202)(180,221,203)(181,193,211)(182,194,212)(183,195,213)(184,196,214)(185,197,215)(186,198,216)(187,199,217)(188,200,218)(189,191,219)(190,192,220), (1,223)(2,224)(3,225)(4,226)(5,227)(6,228)(7,229)(8,230)(9,221)(10,222)(11,170)(12,161)(13,162)(14,163)(15,164)(16,165)(17,166)(18,167)(19,168)(20,169)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,151)(31,130)(32,121)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,129)(41,140)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,150)(52,141)(53,142)(54,143)(55,144)(56,145)(57,146)(58,147)(59,148)(60,149)(61,181)(62,182)(63,183)(64,184)(65,185)(66,186)(67,187)(68,188)(69,189)(70,190)(71,191)(72,192)(73,193)(74,194)(75,195)(76,196)(77,197)(78,198)(79,199)(80,200)(81,201)(82,202)(83,203)(84,204)(85,205)(86,206)(87,207)(88,208)(89,209)(90,210)(91,211)(92,212)(93,213)(94,214)(95,215)(96,216)(97,217)(98,218)(99,219)(100,220)(101,172)(102,173)(103,174)(104,175)(105,176)(106,177)(107,178)(108,179)(109,180)(110,171)(111,231)(112,232)(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)(120,240)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170)(171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190)(191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230)(231,232,233,234,235,236,237,238,239,240), (1,153,93,163)(2,154,94,164)(3,155,95,165)(4,156,96,166)(5,157,97,167)(6,158,98,168)(7,159,99,169)(8,160,100,170)(9,151,91,161)(10,152,92,162)(11,230,29,220)(12,221,30,211)(13,222,21,212)(14,223,22,213)(15,224,23,214)(16,225,24,215)(17,226,25,216)(18,227,26,217)(19,228,27,218)(20,229,28,219)(31,190,53,202)(32,181,54,203)(33,182,55,204)(34,183,56,205)(35,184,57,206)(36,185,58,207)(37,186,59,208)(38,187,60,209)(39,188,51,210)(40,189,52,201)(41,200,237,177)(42,191,238,178)(43,192,239,179)(44,193,240,180)(45,194,231,171)(46,195,232,172)(47,196,233,173)(48,197,234,174)(49,198,235,175)(50,199,236,176)(61,143,83,121)(62,144,84,122)(63,145,85,123)(64,146,86,124)(65,147,87,125)(66,148,88,126)(67,149,89,127)(68,150,90,128)(69,141,81,129)(70,142,82,130)(71,118,107,131)(72,119,108,132)(73,120,109,133)(74,111,110,134)(75,112,101,135)(76,113,102,136)(77,114,103,137)(78,115,104,138)(79,116,105,139)(80,117,106,140), (1,168)(2,169)(3,170)(4,161)(5,162)(6,163)(7,164)(8,165)(9,166)(10,167)(11,215)(12,216)(13,217)(14,218)(15,219)(16,220)(17,211)(18,212)(19,213)(20,214)(21,227)(22,228)(23,229)(24,230)(25,221)(26,222)(27,223)(28,224)(29,225)(30,226)(31,207)(32,208)(33,209)(34,210)(35,201)(36,202)(37,203)(38,204)(39,205)(40,206)(41,172)(42,173)(43,174)(44,175)(45,176)(46,177)(47,178)(48,179)(49,180)(50,171)(51,183)(52,184)(53,185)(54,186)(55,187)(56,188)(57,189)(58,190)(59,181)(60,182)(61,126)(62,127)(63,128)(64,129)(65,130)(66,121)(67,122)(68,123)(69,124)(70,125)(71,136)(72,137)(73,138)(74,139)(75,140)(76,131)(77,132)(78,133)(79,134)(80,135)(81,146)(82,147)(83,148)(84,149)(85,150)(86,141)(87,142)(88,143)(89,144)(90,145)(91,156)(92,157)(93,158)(94,159)(95,160)(96,151)(97,152)(98,153)(99,154)(100,155)(101,117)(102,118)(103,119)(104,120)(105,111)(106,112)(107,113)(108,114)(109,115)(110,116)(191,233)(192,234)(193,235)(194,236)(195,237)(196,238)(197,239)(198,240)(199,231)(200,232), (1,101,85)(2,102,86)(3,103,87)(4,104,88)(5,105,89)(6,106,90)(7,107,81)(8,108,82)(9,109,83)(10,110,84)(11,53,239)(12,54,240)(13,55,231)(14,56,232)(15,57,233)(16,58,234)(17,59,235)(18,60,236)(19,51,237)(20,52,238)(21,33,45)(22,34,46)(23,35,47)(24,36,48)(25,37,49)(26,38,50)(27,39,41)(28,40,42)(29,31,43)(30,32,44)(61,91,73)(62,92,74)(63,93,75)(64,94,76)(65,95,77)(66,96,78)(67,97,79)(68,98,80)(69,99,71)(70,100,72)(111,144,162)(112,145,163)(113,146,164)(114,147,165)(115,148,166)(116,149,167)(117,150,168)(118,141,169)(119,142,170)(120,143,161)(121,151,133)(122,152,134)(123,153,135)(124,154,136)(125,155,137)(126,156,138)(127,157,139)(128,158,140)(129,159,131)(130,160,132)(171,222,204)(172,223,205)(173,224,206)(174,225,207)(175,226,208)(176,227,209)(177,228,210)(178,229,201)(179,230,202)(180,221,203)(181,193,211)(182,194,212)(183,195,213)(184,196,214)(185,197,215)(186,198,216)(187,199,217)(188,200,218)(189,191,219)(190,192,220), (1,223)(2,224)(3,225)(4,226)(5,227)(6,228)(7,229)(8,230)(9,221)(10,222)(11,170)(12,161)(13,162)(14,163)(15,164)(16,165)(17,166)(18,167)(19,168)(20,169)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,151)(31,130)(32,121)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,129)(41,140)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,150)(52,141)(53,142)(54,143)(55,144)(56,145)(57,146)(58,147)(59,148)(60,149)(61,181)(62,182)(63,183)(64,184)(65,185)(66,186)(67,187)(68,188)(69,189)(70,190)(71,191)(72,192)(73,193)(74,194)(75,195)(76,196)(77,197)(78,198)(79,199)(80,200)(81,201)(82,202)(83,203)(84,204)(85,205)(86,206)(87,207)(88,208)(89,209)(90,210)(91,211)(92,212)(93,213)(94,214)(95,215)(96,216)(97,217)(98,218)(99,219)(100,220)(101,172)(102,173)(103,174)(104,175)(105,176)(106,177)(107,178)(108,179)(109,180)(110,171)(111,231)(112,232)(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)(120,240) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170),(171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190),(191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220),(221,222,223,224,225,226,227,228,229,230),(231,232,233,234,235,236,237,238,239,240)], [(1,153,93,163),(2,154,94,164),(3,155,95,165),(4,156,96,166),(5,157,97,167),(6,158,98,168),(7,159,99,169),(8,160,100,170),(9,151,91,161),(10,152,92,162),(11,230,29,220),(12,221,30,211),(13,222,21,212),(14,223,22,213),(15,224,23,214),(16,225,24,215),(17,226,25,216),(18,227,26,217),(19,228,27,218),(20,229,28,219),(31,190,53,202),(32,181,54,203),(33,182,55,204),(34,183,56,205),(35,184,57,206),(36,185,58,207),(37,186,59,208),(38,187,60,209),(39,188,51,210),(40,189,52,201),(41,200,237,177),(42,191,238,178),(43,192,239,179),(44,193,240,180),(45,194,231,171),(46,195,232,172),(47,196,233,173),(48,197,234,174),(49,198,235,175),(50,199,236,176),(61,143,83,121),(62,144,84,122),(63,145,85,123),(64,146,86,124),(65,147,87,125),(66,148,88,126),(67,149,89,127),(68,150,90,128),(69,141,81,129),(70,142,82,130),(71,118,107,131),(72,119,108,132),(73,120,109,133),(74,111,110,134),(75,112,101,135),(76,113,102,136),(77,114,103,137),(78,115,104,138),(79,116,105,139),(80,117,106,140)], [(1,168),(2,169),(3,170),(4,161),(5,162),(6,163),(7,164),(8,165),(9,166),(10,167),(11,215),(12,216),(13,217),(14,218),(15,219),(16,220),(17,211),(18,212),(19,213),(20,214),(21,227),(22,228),(23,229),(24,230),(25,221),(26,222),(27,223),(28,224),(29,225),(30,226),(31,207),(32,208),(33,209),(34,210),(35,201),(36,202),(37,203),(38,204),(39,205),(40,206),(41,172),(42,173),(43,174),(44,175),(45,176),(46,177),(47,178),(48,179),(49,180),(50,171),(51,183),(52,184),(53,185),(54,186),(55,187),(56,188),(57,189),(58,190),(59,181),(60,182),(61,126),(62,127),(63,128),(64,129),(65,130),(66,121),(67,122),(68,123),(69,124),(70,125),(71,136),(72,137),(73,138),(74,139),(75,140),(76,131),(77,132),(78,133),(79,134),(80,135),(81,146),(82,147),(83,148),(84,149),(85,150),(86,141),(87,142),(88,143),(89,144),(90,145),(91,156),(92,157),(93,158),(94,159),(95,160),(96,151),(97,152),(98,153),(99,154),(100,155),(101,117),(102,118),(103,119),(104,120),(105,111),(106,112),(107,113),(108,114),(109,115),(110,116),(191,233),(192,234),(193,235),(194,236),(195,237),(196,238),(197,239),(198,240),(199,231),(200,232)], [(1,101,85),(2,102,86),(3,103,87),(4,104,88),(5,105,89),(6,106,90),(7,107,81),(8,108,82),(9,109,83),(10,110,84),(11,53,239),(12,54,240),(13,55,231),(14,56,232),(15,57,233),(16,58,234),(17,59,235),(18,60,236),(19,51,237),(20,52,238),(21,33,45),(22,34,46),(23,35,47),(24,36,48),(25,37,49),(26,38,50),(27,39,41),(28,40,42),(29,31,43),(30,32,44),(61,91,73),(62,92,74),(63,93,75),(64,94,76),(65,95,77),(66,96,78),(67,97,79),(68,98,80),(69,99,71),(70,100,72),(111,144,162),(112,145,163),(113,146,164),(114,147,165),(115,148,166),(116,149,167),(117,150,168),(118,141,169),(119,142,170),(120,143,161),(121,151,133),(122,152,134),(123,153,135),(124,154,136),(125,155,137),(126,156,138),(127,157,139),(128,158,140),(129,159,131),(130,160,132),(171,222,204),(172,223,205),(173,224,206),(174,225,207),(175,226,208),(176,227,209),(177,228,210),(178,229,201),(179,230,202),(180,221,203),(181,193,211),(182,194,212),(183,195,213),(184,196,214),(185,197,215),(186,198,216),(187,199,217),(188,200,218),(189,191,219),(190,192,220)], [(1,223),(2,224),(3,225),(4,226),(5,227),(6,228),(7,229),(8,230),(9,221),(10,222),(11,170),(12,161),(13,162),(14,163),(15,164),(16,165),(17,166),(18,167),(19,168),(20,169),(21,152),(22,153),(23,154),(24,155),(25,156),(26,157),(27,158),(28,159),(29,160),(30,151),(31,130),(32,121),(33,122),(34,123),(35,124),(36,125),(37,126),(38,127),(39,128),(40,129),(41,140),(42,131),(43,132),(44,133),(45,134),(46,135),(47,136),(48,137),(49,138),(50,139),(51,150),(52,141),(53,142),(54,143),(55,144),(56,145),(57,146),(58,147),(59,148),(60,149),(61,181),(62,182),(63,183),(64,184),(65,185),(66,186),(67,187),(68,188),(69,189),(70,190),(71,191),(72,192),(73,193),(74,194),(75,195),(76,196),(77,197),(78,198),(79,199),(80,200),(81,201),(82,202),(83,203),(84,204),(85,205),(86,206),(87,207),(88,208),(89,209),(90,210),(91,211),(92,212),(93,213),(94,214),(95,215),(96,216),(97,217),(98,218),(99,219),(100,220),(101,172),(102,173),(103,174),(104,175),(105,176),(106,177),(107,178),(108,179),(109,180),(110,171),(111,231),(112,232),(113,233),(114,234),(115,235),(116,236),(117,237),(118,238),(119,239),(120,240)])

Matrix representation G ⊆ GL5(𝔽61)

410000
020000
002000
00090
00009
,
600000
01000
00100
00013
0004060
,
600000
01000
00100
00013
000060
,
10000
00100
0606000
00010
00001
,
10000
0193100
0124200
0005028
0004811

G:=sub<GL(5,GF(61))| [41,0,0,0,0,0,20,0,0,0,0,0,20,0,0,0,0,0,9,0,0,0,0,0,9],[60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,40,0,0,0,3,60],[60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,3,60],[1,0,0,0,0,0,0,60,0,0,0,1,60,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,19,12,0,0,0,31,42,0,0,0,0,0,50,48,0,0,0,28,11] >;

150 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J5A5B5C5D6A6B6C6D6E6F6G10A···10L10M···10AB10AC···10AJ12A12B15A15B15C15D20A···20H20I···20X20Y···20AN30A···30L30M···30AB60A···60H
order1222222222344444444445555666666610···1010···1010···1012121515151520···2020···2020···2030···3030···3060···60
size111122226622233336666111122244441···12···26···64422222···23···36···62···24···44···4

150 irreducible representations

dim11111111111111222222222244
type+++++++++++-
imageC1C2C2C2C2C2C2C5C10C10C10C10C10C10S3D6D6D6C4○D4C5×S3S3×C10S3×C10S3×C10C5×C4○D4D42S3C5×D42S3
kernelC10×D42S3C10×Dic6S3×C2×C20C5×D42S3Dic3×C2×C10C10×C3⋊D4D4×C30C2×D42S3C2×Dic6S3×C2×C4D42S3C22×Dic3C2×C3⋊D4C6×D4D4×C10C2×C20C5×D4C22×C10C30C2×D4C2×C4D4C23C6C10C2
# reps11182214443288411424441681628

In GAP, Magma, Sage, TeX

C_{10}\times D_4\rtimes_2S_3
% in TeX

G:=Group("C10xD4:2S3");
// GroupNames label

G:=SmallGroup(480,1155);
// by ID

G=gap.SmallGroup(480,1155);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-3,436,2467,633,15686]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽