Copied to
clipboard

?

G = D152M4(2)  order 480 = 25·3·5

The semidirect product of D15 and M4(2) acting via M4(2)/C22=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D152M4(2), C5⋊C84D6, D15⋊C86C2, C53(S3×M4(2)), C155(C2×M4(2)), C22.F53S3, C15⋊C84C22, C22.9(S3×F5), D30.14(C2×C4), C33(D5⋊M4(2)), Dic3.F56C2, D30.C2.5C4, (C2×Dic3).6F5, C6.26(C22×F5), C158M4(2)⋊4C2, C30.26(C22×C4), Dic5.30(C4×S3), Dic3.16(C2×F5), (C10×Dic3).9C4, (C22×D15).6C4, (C2×Dic5).150D6, D30.C2.17C22, (C3×Dic5).36C23, Dic5.38(C22×S3), (C6×Dic5).147C22, C2.26(C2×S3×F5), (C3×C5⋊C8)⋊4C22, C10.26(S3×C2×C4), (C2×C6).8(C2×F5), (C2×C30).21(C2×C4), (C2×C10).21(C4×S3), (C3×C22.F5)⋊4C2, (C2×D30.C2).12C2, (C5×Dic3).15(C2×C4), (C3×Dic5).28(C2×C4), SmallGroup(480,1007)

Series: Derived Chief Lower central Upper central

C1C30 — D152M4(2)
C1C5C15C30C3×Dic5C3×C5⋊C8D15⋊C8 — D152M4(2)
C15C30 — D152M4(2)

Subgroups: 692 in 136 conjugacy classes, 48 normal (36 characteristic)
C1, C2, C2 [×4], C3, C4 [×4], C22, C22 [×4], C5, S3 [×3], C6, C6, C8 [×4], C2×C4 [×6], C23, D5 [×3], C10, C10, Dic3 [×2], C12 [×2], D6 [×4], C2×C6, C15, C2×C8 [×2], M4(2) [×4], C22×C4, Dic5 [×2], C20 [×2], D10 [×4], C2×C10, C3⋊C8 [×2], C24 [×2], C4×S3 [×4], C2×Dic3, C2×C12, C22×S3, D15 [×2], D15, C30, C30, C2×M4(2), C5⋊C8 [×2], C5⋊C8 [×2], C4×D5 [×4], C2×Dic5, C2×C20, C22×D5, S3×C8 [×2], C8⋊S3 [×2], C4.Dic3, C3×M4(2), S3×C2×C4, C5×Dic3 [×2], C3×Dic5 [×2], D30 [×2], D30 [×2], C2×C30, D5⋊C8 [×2], C4.F5 [×2], C22.F5, C22.F5, C2×C4×D5, S3×M4(2), C3×C5⋊C8 [×2], C15⋊C8 [×2], D30.C2 [×4], C6×Dic5, C10×Dic3, C22×D15, D5⋊M4(2), D15⋊C8 [×2], Dic3.F5 [×2], C3×C22.F5, C158M4(2), C2×D30.C2, D152M4(2)

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], S3, C2×C4 [×6], C23, D6 [×3], M4(2) [×2], C22×C4, F5, C4×S3 [×2], C22×S3, C2×M4(2), C2×F5 [×3], S3×C2×C4, C22×F5, S3×M4(2), S3×F5, D5⋊M4(2), C2×S3×F5, D152M4(2)

Generators and relations
 G = < a,b,c,d | a15=b2=c8=d2=1, bab=a-1, cac-1=a13, ad=da, cbc-1=a12b, bd=db, dcd=c5 >

Smallest permutation representation
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 30)(10 29)(11 28)(12 27)(13 26)(14 25)(15 24)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 60)(41 59)(42 58)(43 57)(44 56)(45 55)(61 80)(62 79)(63 78)(64 77)(65 76)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)(91 109)(92 108)(93 107)(94 106)(95 120)(96 119)(97 118)(98 117)(99 116)(100 115)(101 114)(102 113)(103 112)(104 111)(105 110)
(1 112 40 61 24 104 46 81)(2 119 44 74 25 96 50 79)(3 111 33 72 26 103 54 77)(4 118 37 70 27 95 58 90)(5 110 41 68 28 102 47 88)(6 117 45 66 29 94 51 86)(7 109 34 64 30 101 55 84)(8 116 38 62 16 93 59 82)(9 108 42 75 17 100 48 80)(10 115 31 73 18 92 52 78)(11 107 35 71 19 99 56 76)(12 114 39 69 20 91 60 89)(13 106 43 67 21 98 49 87)(14 113 32 65 22 105 53 85)(15 120 36 63 23 97 57 83)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(31 52)(32 53)(33 54)(34 55)(35 56)(36 57)(37 58)(38 59)(39 60)(40 46)(41 47)(42 48)(43 49)(44 50)(45 51)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,60)(41,59)(42,58)(43,57)(44,56)(45,55)(61,80)(62,79)(63,78)(64,77)(65,76)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(91,109)(92,108)(93,107)(94,106)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110), (1,112,40,61,24,104,46,81)(2,119,44,74,25,96,50,79)(3,111,33,72,26,103,54,77)(4,118,37,70,27,95,58,90)(5,110,41,68,28,102,47,88)(6,117,45,66,29,94,51,86)(7,109,34,64,30,101,55,84)(8,116,38,62,16,93,59,82)(9,108,42,75,17,100,48,80)(10,115,31,73,18,92,52,78)(11,107,35,71,19,99,56,76)(12,114,39,69,20,91,60,89)(13,106,43,67,21,98,49,87)(14,113,32,65,22,105,53,85)(15,120,36,63,23,97,57,83), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,60)(41,59)(42,58)(43,57)(44,56)(45,55)(61,80)(62,79)(63,78)(64,77)(65,76)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(91,109)(92,108)(93,107)(94,106)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110), (1,112,40,61,24,104,46,81)(2,119,44,74,25,96,50,79)(3,111,33,72,26,103,54,77)(4,118,37,70,27,95,58,90)(5,110,41,68,28,102,47,88)(6,117,45,66,29,94,51,86)(7,109,34,64,30,101,55,84)(8,116,38,62,16,93,59,82)(9,108,42,75,17,100,48,80)(10,115,31,73,18,92,52,78)(11,107,35,71,19,99,56,76)(12,114,39,69,20,91,60,89)(13,106,43,67,21,98,49,87)(14,113,32,65,22,105,53,85)(15,120,36,63,23,97,57,83), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,30),(10,29),(11,28),(12,27),(13,26),(14,25),(15,24),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,60),(41,59),(42,58),(43,57),(44,56),(45,55),(61,80),(62,79),(63,78),(64,77),(65,76),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81),(91,109),(92,108),(93,107),(94,106),(95,120),(96,119),(97,118),(98,117),(99,116),(100,115),(101,114),(102,113),(103,112),(104,111),(105,110)], [(1,112,40,61,24,104,46,81),(2,119,44,74,25,96,50,79),(3,111,33,72,26,103,54,77),(4,118,37,70,27,95,58,90),(5,110,41,68,28,102,47,88),(6,117,45,66,29,94,51,86),(7,109,34,64,30,101,55,84),(8,116,38,62,16,93,59,82),(9,108,42,75,17,100,48,80),(10,115,31,73,18,92,52,78),(11,107,35,71,19,99,56,76),(12,114,39,69,20,91,60,89),(13,106,43,67,21,98,49,87),(14,113,32,65,22,105,53,85),(15,120,36,63,23,97,57,83)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(31,52),(32,53),(33,54),(34,55),(35,56),(36,57),(37,58),(38,59),(39,60),(40,46),(41,47),(42,48),(43,49),(44,50),(45,51)])

Matrix representation G ⊆ GL8(𝔽241)

2401000000
2400000000
0024010000
0024000000
00001905100
000019024000
0000641950240
000046195151
,
10000000
1240000000
00100000
0012400000
0000024000
0000240000
000000511
00000051190
,
0012500000
0001250000
2000000000
0200000000
000016011520
0000160002
00001171381126
000018213810
,
2400000000
0240000000
00100000
00010000
0000240000
0000024000
000016011510
0000160001

G:=sub<GL(8,GF(241))| [240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,190,190,64,46,0,0,0,0,51,240,195,195,0,0,0,0,0,0,0,1,0,0,0,0,0,0,240,51],[1,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,51,51,0,0,0,0,0,0,1,190],[0,0,200,0,0,0,0,0,0,0,0,200,0,0,0,0,125,0,0,0,0,0,0,0,0,125,0,0,0,0,0,0,0,0,0,0,160,160,117,182,0,0,0,0,115,0,13,13,0,0,0,0,2,0,81,81,0,0,0,0,0,2,126,0],[240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240,0,160,160,0,0,0,0,0,240,115,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F 5 6A6B8A8B8C8D8E8F8G8H10A10B10C12A12B12C 15 20A20B20C20D24A24B24C24D30A30B30C
order122222344444456688888888101010121212152020202024242424303030
size11215153023355610424101010103030303044410102081212121220202020888

42 irreducible representations

dim11111111122222244444888
type+++++++++++++++
imageC1C2C2C2C2C2C4C4C4S3D6D6M4(2)C4×S3C4×S3F5C2×F5C2×F5S3×M4(2)D5⋊M4(2)S3×F5C2×S3×F5D152M4(2)
kernelD152M4(2)D15⋊C8Dic3.F5C3×C22.F5C158M4(2)C2×D30.C2D30.C2C10×Dic3C22×D15C22.F5C5⋊C8C2×Dic5D15Dic5C2×C10C2×Dic3Dic3C2×C6C5C3C22C2C1
# reps12211142212142212124112

In GAP, Magma, Sage, TeX

D_{15}\rtimes_2M_{4(2)}
% in TeX

G:=Group("D15:2M4(2)");
// GroupNames label

G:=SmallGroup(480,1007);
// by ID

G=gap.SmallGroup(480,1007);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,120,422,80,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=a^13,a*d=d*a,c*b*c^-1=a^12*b,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽