Extensions 1→N→G→Q→1 with N=C3×Dic5 and Q=D4

Direct product G=N×Q with N=C3×Dic5 and Q=D4
dρLabelID
C3×D4×Dic5240C3xD4xDic5480,727

Semidirect products G=N:Q with N=C3×Dic5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×Dic5)⋊1D4 = Dic5⋊D12φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5):1D4480,492
(C3×Dic5)⋊2D4 = D30⋊D4φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5):2D4480,496
(C3×Dic5)⋊3D4 = D306D4φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5):3D4480,609
(C3×Dic5)⋊4D4 = (S3×C10)⋊D4φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5):4D4480,641
(C3×Dic5)⋊5D4 = Dic155D4φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5):5D4480,643
(C3×Dic5)⋊6D4 = Dic54D12φ: D4/C4C2 ⊆ Out C3×Dic5240(C3xDic5):6D4480,481
(C3×Dic5)⋊7D4 = Dic5×D12φ: D4/C4C2 ⊆ Out C3×Dic5240(C3xDic5):7D4480,491
(C3×Dic5)⋊8D4 = D6017C4φ: D4/C4C2 ⊆ Out C3×Dic5240(C3xDic5):8D4480,494
(C3×Dic5)⋊9D4 = C20⋊D12φ: D4/C4C2 ⊆ Out C3×Dic5240(C3xDic5):9D4480,527
(C3×Dic5)⋊10D4 = C3×C20⋊D4φ: D4/C4C2 ⊆ Out C3×Dic5240(C3xDic5):10D4480,733
(C3×Dic5)⋊11D4 = D6⋊(C4×D5)φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5):11D4480,516
(C3×Dic5)⋊12D4 = C1520(C4×D4)φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5):12D4480,520
(C3×Dic5)⋊13D4 = D10⋊D12φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5):13D4480,524
(C3×Dic5)⋊14D4 = Dic5×C3⋊D4φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5):14D4480,627
(C3×Dic5)⋊15D4 = C1526(C4×D4)φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5):15D4480,628
(C3×Dic5)⋊16D4 = (C2×C10)⋊4D12φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5):16D4480,642
(C3×Dic5)⋊17D4 = C3×D10⋊D4φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5):17D4480,677
(C3×Dic5)⋊18D4 = C3×Dic5⋊D4φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5):18D4480,732
(C3×Dic5)⋊19D4 = C3×Dic54D4φ: trivial image240(C3xDic5):19D4480,674
(C3×Dic5)⋊20D4 = C3×D208C4φ: trivial image240(C3xDic5):20D4480,686

Non-split extensions G=N.Q with N=C3×Dic5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×Dic5).1D4 = C24⋊D10φ: D4/C2C22 ⊆ Out C3×Dic51204+(C3xDic5).1D4480,325
(C3×Dic5).2D4 = D24⋊D5φ: D4/C2C22 ⊆ Out C3×Dic51204(C3xDic5).2D4480,326
(C3×Dic5).3D4 = Dic60⋊C2φ: D4/C2C22 ⊆ Out C3×Dic52404-(C3xDic5).3D4480,336
(C3×Dic5).4D4 = C24.2D10φ: D4/C2C22 ⊆ Out C3×Dic52404(C3xDic5).4D4480,337
(C3×Dic5).5D4 = (C2×C20).D6φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5).5D4480,402
(C3×Dic5).6D4 = Dic151Q8φ: D4/C2C22 ⊆ Out C3×Dic5480(C3xDic5).6D4480,403
(C3×Dic5).7D4 = D61Dic10φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5).7D4480,486
(C3×Dic5).8D4 = D30⋊Q8φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5).8D4480,487
(C3×Dic5).9D4 = D62Dic10φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5).9D4480,493
(C3×Dic5).10D4 = D302Q8φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5).10D4480,495
(C3×Dic5).11D4 = D5×D4⋊S3φ: D4/C2C22 ⊆ Out C3×Dic51208+(C3xDic5).11D4480,553
(C3×Dic5).12D4 = D5×D4.S3φ: D4/C2C22 ⊆ Out C3×Dic51208-(C3xDic5).12D4480,559
(C3×Dic5).13D4 = D1210D10φ: D4/C2C22 ⊆ Out C3×Dic51208-(C3xDic5).13D4480,565
(C3×Dic5).14D4 = D20.9D6φ: D4/C2C22 ⊆ Out C3×Dic51208+(C3xDic5).14D4480,567
(C3×Dic5).15D4 = D5×Q82S3φ: D4/C2C22 ⊆ Out C3×Dic51208+(C3xDic5).15D4480,577
(C3×Dic5).16D4 = D5×C3⋊Q16φ: D4/C2C22 ⊆ Out C3×Dic52408-(C3xDic5).16D4480,583
(C3×Dic5).17D4 = D12.27D10φ: D4/C2C22 ⊆ Out C3×Dic52408-(C3xDic5).17D4480,589
(C3×Dic5).18D4 = C60.39C23φ: D4/C2C22 ⊆ Out C3×Dic52408+(C3xDic5).18D4480,591
(C3×Dic5).19D4 = C6.(D4×D5)φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5).19D4480,610
(C3×Dic5).20D4 = D60⋊C4φ: D4/C2C22 ⊆ Out C3×Dic51208+(C3xDic5).20D4480,227
(C3×Dic5).21D4 = D12⋊F5φ: D4/C2C22 ⊆ Out C3×Dic51208+(C3xDic5).21D4480,228
(C3×Dic5).22D4 = Dic6⋊F5φ: D4/C2C22 ⊆ Out C3×Dic51208-(C3xDic5).22D4480,229
(C3×Dic5).23D4 = Dic30⋊C4φ: D4/C2C22 ⊆ Out C3×Dic51208-(C3xDic5).23D4480,230
(C3×Dic5).24D4 = D124F5φ: D4/C2C22 ⊆ Out C3×Dic51208-(C3xDic5).24D4480,231
(C3×Dic5).25D4 = D122F5φ: D4/C2C22 ⊆ Out C3×Dic51208-(C3xDic5).25D4480,232
(C3×Dic5).26D4 = D602C4φ: D4/C2C22 ⊆ Out C3×Dic51208+(C3xDic5).26D4480,233
(C3×Dic5).27D4 = D605C4φ: D4/C2C22 ⊆ Out C3×Dic51208+(C3xDic5).27D4480,234
(C3×Dic5).28D4 = D10.Dic6φ: D4/C2C22 ⊆ Out C3×Dic52408(C3xDic5).28D4480,237
(C3×Dic5).29D4 = D10.2Dic6φ: D4/C2C22 ⊆ Out C3×Dic52408(C3xDic5).29D4480,238
(C3×Dic5).30D4 = Dic5.22D12φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5).30D4480,246
(C3×Dic5).31D4 = D30⋊C8φ: D4/C2C22 ⊆ Out C3×Dic5240(C3xDic5).31D4480,247
(C3×Dic5).32D4 = Dic5.D12φ: D4/C2C22 ⊆ Out C3×Dic51208+(C3xDic5).32D4480,250
(C3×Dic5).33D4 = Dic5.4D12φ: D4/C2C22 ⊆ Out C3×Dic52408-(C3xDic5).33D4480,251
(C3×Dic5).34D4 = C30.4M4(2)φ: D4/C2C22 ⊆ Out C3×Dic5480(C3xDic5).34D4480,252
(C3×Dic5).35D4 = Dic15⋊C8φ: D4/C2C22 ⊆ Out C3×Dic5480(C3xDic5).35D4480,253
(C3×Dic5).36D4 = (C2×C60).C4φ: D4/C2C22 ⊆ Out C3×Dic52404(C3xDic5).36D4480,310
(C3×Dic5).37D4 = D20⋊Dic3φ: D4/C2C22 ⊆ Out C3×Dic51208(C3xDic5).37D4480,312
(C3×Dic5).38D4 = Dic102Dic3φ: D4/C2C22 ⊆ Out C3×Dic51208(C3xDic5).38D4480,314
(C3×Dic5).39D4 = C5⋊(C12.D4)φ: D4/C2C22 ⊆ Out C3×Dic51204(C3xDic5).39D4480,318
(C3×Dic5).40D4 = C3×Dic5.D4φ: D4/C2C22 ⊆ Out C3×Dic52404(C3xDic5).40D4480,285
(C3×Dic5).41D4 = C3×D20⋊C4φ: D4/C2C22 ⊆ Out C3×Dic51208(C3xDic5).41D4480,287
(C3×Dic5).42D4 = C3×Q8⋊F5φ: D4/C2C22 ⊆ Out C3×Dic51208(C3xDic5).42D4480,289
(C3×Dic5).43D4 = C3×C23.F5φ: D4/C2C22 ⊆ Out C3×Dic51204(C3xDic5).43D4480,293
(C3×Dic5).44D4 = D5×C24⋊C2φ: D4/C4C2 ⊆ Out C3×Dic51204(C3xDic5).44D4480,323
(C3×Dic5).45D4 = D5×D24φ: D4/C4C2 ⊆ Out C3×Dic51204+(C3xDic5).45D4480,324
(C3×Dic5).46D4 = D5×Dic12φ: D4/C4C2 ⊆ Out C3×Dic52404-(C3xDic5).46D4480,335
(C3×Dic5).47D4 = C40.31D6φ: D4/C4C2 ⊆ Out C3×Dic52404(C3xDic5).47D4480,345
(C3×Dic5).48D4 = D247D5φ: D4/C4C2 ⊆ Out C3×Dic52404-(C3xDic5).48D4480,346
(C3×Dic5).49D4 = D120⋊C2φ: D4/C4C2 ⊆ Out C3×Dic52404+(C3xDic5).49D4480,347
(C3×Dic5).50D4 = Dic5.8D12φ: D4/C4C2 ⊆ Out C3×Dic5240(C3xDic5).50D4480,426
(C3×Dic5).51D4 = C60⋊Q8φ: D4/C4C2 ⊆ Out C3×Dic5480(C3xDic5).51D4480,544
(C3×Dic5).52D4 = C3×Dic5.5D4φ: D4/C4C2 ⊆ Out C3×Dic5240(C3xDic5).52D4480,678
(C3×Dic5).53D4 = C3×C20⋊Q8φ: D4/C4C2 ⊆ Out C3×Dic5480(C3xDic5).53D4480,681
(C3×Dic5).54D4 = C3×D5×D8φ: D4/C4C2 ⊆ Out C3×Dic51204(C3xDic5).54D4480,703
(C3×Dic5).55D4 = C3×D5×SD16φ: D4/C4C2 ⊆ Out C3×Dic51204(C3xDic5).55D4480,706
(C3×Dic5).56D4 = C3×D5×Q16φ: D4/C4C2 ⊆ Out C3×Dic52404(C3xDic5).56D4480,710
(C3×Dic5).57D4 = C40.Dic3φ: D4/C4C2 ⊆ Out C3×Dic52404(C3xDic5).57D4480,300
(C3×Dic5).58D4 = C24.1F5φ: D4/C4C2 ⊆ Out C3×Dic52404(C3xDic5).58D4480,301
(C3×Dic5).59D4 = C60⋊C8φ: D4/C4C2 ⊆ Out C3×Dic5480(C3xDic5).59D4480,306
(C3×Dic5).60D4 = Dic5.13D12φ: D4/C4C2 ⊆ Out C3×Dic5480(C3xDic5).60D4480,309
(C3×Dic5).61D4 = C3×C40.C4φ: D4/C4C2 ⊆ Out C3×Dic52404(C3xDic5).61D4480,275
(C3×Dic5).62D4 = C3×D10.Q8φ: D4/C4C2 ⊆ Out C3×Dic52404(C3xDic5).62D4480,276
(C3×Dic5).63D4 = C3×C20⋊C8φ: D4/C4C2 ⊆ Out C3×Dic5480(C3xDic5).63D4480,281
(C3×Dic5).64D4 = C3×Dic5⋊C8φ: D4/C4C2 ⊆ Out C3×Dic5480(C3xDic5).64D4480,284
(C3×Dic5).65D4 = D10⋊Dic6φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5).65D4480,425
(C3×Dic5).66D4 = Dic103D6φ: D4/C22C2 ⊆ Out C3×Dic51208+(C3xDic5).66D4480,554
(C3×Dic5).67D4 = C60.8C23φ: D4/C22C2 ⊆ Out C3×Dic52408-(C3xDic5).67D4480,560
(C3×Dic5).68D4 = D12.24D10φ: D4/C22C2 ⊆ Out C3×Dic52408-(C3xDic5).68D4480,566
(C3×Dic5).69D4 = C60.16C23φ: D4/C22C2 ⊆ Out C3×Dic52408+(C3xDic5).69D4480,568
(C3×Dic5).70D4 = D20⋊D6φ: D4/C22C2 ⊆ Out C3×Dic51208+(C3xDic5).70D4480,578
(C3×Dic5).71D4 = D20.13D6φ: D4/C22C2 ⊆ Out C3×Dic52408-(C3xDic5).71D4480,584
(C3×Dic5).72D4 = D20.14D6φ: D4/C22C2 ⊆ Out C3×Dic52408-(C3xDic5).72D4480,590
(C3×Dic5).73D4 = D20.D6φ: D4/C22C2 ⊆ Out C3×Dic52408+(C3xDic5).73D4480,592
(C3×Dic5).74D4 = (C2×C30)⋊Q8φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5).74D4480,650
(C3×Dic5).75D4 = C3×Dic5.14D4φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5).75D4480,671
(C3×Dic5).76D4 = C3×D10⋊Q8φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5).76D4480,689
(C3×Dic5).77D4 = C3×D8⋊D5φ: D4/C22C2 ⊆ Out C3×Dic51204(C3xDic5).77D4480,704
(C3×Dic5).78D4 = C3×D40⋊C2φ: D4/C22C2 ⊆ Out C3×Dic51204(C3xDic5).78D4480,707
(C3×Dic5).79D4 = C3×SD16⋊D5φ: D4/C22C2 ⊆ Out C3×Dic52404(C3xDic5).79D4480,708
(C3×Dic5).80D4 = C3×Q16⋊D5φ: D4/C22C2 ⊆ Out C3×Dic52404(C3xDic5).80D4480,711
(C3×Dic5).81D4 = C30.7M4(2)φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5).81D4480,308
(C3×Dic5).82D4 = Dic10⋊Dic3φ: D4/C22C2 ⊆ Out C3×Dic51208(C3xDic5).82D4480,313
(C3×Dic5).83D4 = D202Dic3φ: D4/C22C2 ⊆ Out C3×Dic51208(C3xDic5).83D4480,315
(C3×Dic5).84D4 = C30.22M4(2)φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5).84D4480,317
(C3×Dic5).85D4 = C3×D10⋊C8φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5).85D4480,283
(C3×Dic5).86D4 = C3×D4⋊F5φ: D4/C22C2 ⊆ Out C3×Dic51208(C3xDic5).86D4480,288
(C3×Dic5).87D4 = C3×Q82F5φ: D4/C22C2 ⊆ Out C3×Dic51208(C3xDic5).87D4480,290
(C3×Dic5).88D4 = C3×C23.2F5φ: D4/C22C2 ⊆ Out C3×Dic5240(C3xDic5).88D4480,292
(C3×Dic5).89D4 = C3×D83D5φ: trivial image2404(C3xDic5).89D4480,705
(C3×Dic5).90D4 = C3×SD163D5φ: trivial image2404(C3xDic5).90D4480,709
(C3×Dic5).91D4 = C3×Q8.D10φ: trivial image2404(C3xDic5).91D4480,712

׿
×
𝔽