Extensions 1→N→G→Q→1 with N=C3xDic5 and Q=D4

Direct product G=NxQ with N=C3xDic5 and Q=D4
dρLabelID
C3xD4xDic5240C3xD4xDic5480,727

Semidirect products G=N:Q with N=C3xDic5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3xDic5):1D4 = Dic5:D12φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5):1D4480,492
(C3xDic5):2D4 = D30:D4φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5):2D4480,496
(C3xDic5):3D4 = D30:6D4φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5):3D4480,609
(C3xDic5):4D4 = (S3xC10):D4φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5):4D4480,641
(C3xDic5):5D4 = Dic15:5D4φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5):5D4480,643
(C3xDic5):6D4 = Dic5:4D12φ: D4/C4C2 ⊆ Out C3xDic5240(C3xDic5):6D4480,481
(C3xDic5):7D4 = Dic5xD12φ: D4/C4C2 ⊆ Out C3xDic5240(C3xDic5):7D4480,491
(C3xDic5):8D4 = D60:17C4φ: D4/C4C2 ⊆ Out C3xDic5240(C3xDic5):8D4480,494
(C3xDic5):9D4 = C20:D12φ: D4/C4C2 ⊆ Out C3xDic5240(C3xDic5):9D4480,527
(C3xDic5):10D4 = C3xC20:D4φ: D4/C4C2 ⊆ Out C3xDic5240(C3xDic5):10D4480,733
(C3xDic5):11D4 = D6:(C4xD5)φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5):11D4480,516
(C3xDic5):12D4 = C15:20(C4xD4)φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5):12D4480,520
(C3xDic5):13D4 = D10:D12φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5):13D4480,524
(C3xDic5):14D4 = Dic5xC3:D4φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5):14D4480,627
(C3xDic5):15D4 = C15:26(C4xD4)φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5):15D4480,628
(C3xDic5):16D4 = (C2xC10):4D12φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5):16D4480,642
(C3xDic5):17D4 = C3xD10:D4φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5):17D4480,677
(C3xDic5):18D4 = C3xDic5:D4φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5):18D4480,732
(C3xDic5):19D4 = C3xDic5:4D4φ: trivial image240(C3xDic5):19D4480,674
(C3xDic5):20D4 = C3xD20:8C4φ: trivial image240(C3xDic5):20D4480,686

Non-split extensions G=N.Q with N=C3xDic5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3xDic5).1D4 = C24:D10φ: D4/C2C22 ⊆ Out C3xDic51204+(C3xDic5).1D4480,325
(C3xDic5).2D4 = D24:D5φ: D4/C2C22 ⊆ Out C3xDic51204(C3xDic5).2D4480,326
(C3xDic5).3D4 = Dic60:C2φ: D4/C2C22 ⊆ Out C3xDic52404-(C3xDic5).3D4480,336
(C3xDic5).4D4 = C24.2D10φ: D4/C2C22 ⊆ Out C3xDic52404(C3xDic5).4D4480,337
(C3xDic5).5D4 = (C2xC20).D6φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5).5D4480,402
(C3xDic5).6D4 = Dic15:1Q8φ: D4/C2C22 ⊆ Out C3xDic5480(C3xDic5).6D4480,403
(C3xDic5).7D4 = D6:1Dic10φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5).7D4480,486
(C3xDic5).8D4 = D30:Q8φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5).8D4480,487
(C3xDic5).9D4 = D6:2Dic10φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5).9D4480,493
(C3xDic5).10D4 = D30:2Q8φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5).10D4480,495
(C3xDic5).11D4 = D5xD4:S3φ: D4/C2C22 ⊆ Out C3xDic51208+(C3xDic5).11D4480,553
(C3xDic5).12D4 = D5xD4.S3φ: D4/C2C22 ⊆ Out C3xDic51208-(C3xDic5).12D4480,559
(C3xDic5).13D4 = D12:10D10φ: D4/C2C22 ⊆ Out C3xDic51208-(C3xDic5).13D4480,565
(C3xDic5).14D4 = D20.9D6φ: D4/C2C22 ⊆ Out C3xDic51208+(C3xDic5).14D4480,567
(C3xDic5).15D4 = D5xQ8:2S3φ: D4/C2C22 ⊆ Out C3xDic51208+(C3xDic5).15D4480,577
(C3xDic5).16D4 = D5xC3:Q16φ: D4/C2C22 ⊆ Out C3xDic52408-(C3xDic5).16D4480,583
(C3xDic5).17D4 = D12.27D10φ: D4/C2C22 ⊆ Out C3xDic52408-(C3xDic5).17D4480,589
(C3xDic5).18D4 = C60.39C23φ: D4/C2C22 ⊆ Out C3xDic52408+(C3xDic5).18D4480,591
(C3xDic5).19D4 = C6.(D4xD5)φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5).19D4480,610
(C3xDic5).20D4 = D60:C4φ: D4/C2C22 ⊆ Out C3xDic51208+(C3xDic5).20D4480,227
(C3xDic5).21D4 = D12:F5φ: D4/C2C22 ⊆ Out C3xDic51208+(C3xDic5).21D4480,228
(C3xDic5).22D4 = Dic6:F5φ: D4/C2C22 ⊆ Out C3xDic51208-(C3xDic5).22D4480,229
(C3xDic5).23D4 = Dic30:C4φ: D4/C2C22 ⊆ Out C3xDic51208-(C3xDic5).23D4480,230
(C3xDic5).24D4 = D12:4F5φ: D4/C2C22 ⊆ Out C3xDic51208-(C3xDic5).24D4480,231
(C3xDic5).25D4 = D12:2F5φ: D4/C2C22 ⊆ Out C3xDic51208-(C3xDic5).25D4480,232
(C3xDic5).26D4 = D60:2C4φ: D4/C2C22 ⊆ Out C3xDic51208+(C3xDic5).26D4480,233
(C3xDic5).27D4 = D60:5C4φ: D4/C2C22 ⊆ Out C3xDic51208+(C3xDic5).27D4480,234
(C3xDic5).28D4 = D10.Dic6φ: D4/C2C22 ⊆ Out C3xDic52408(C3xDic5).28D4480,237
(C3xDic5).29D4 = D10.2Dic6φ: D4/C2C22 ⊆ Out C3xDic52408(C3xDic5).29D4480,238
(C3xDic5).30D4 = Dic5.22D12φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5).30D4480,246
(C3xDic5).31D4 = D30:C8φ: D4/C2C22 ⊆ Out C3xDic5240(C3xDic5).31D4480,247
(C3xDic5).32D4 = Dic5.D12φ: D4/C2C22 ⊆ Out C3xDic51208+(C3xDic5).32D4480,250
(C3xDic5).33D4 = Dic5.4D12φ: D4/C2C22 ⊆ Out C3xDic52408-(C3xDic5).33D4480,251
(C3xDic5).34D4 = C30.4M4(2)φ: D4/C2C22 ⊆ Out C3xDic5480(C3xDic5).34D4480,252
(C3xDic5).35D4 = Dic15:C8φ: D4/C2C22 ⊆ Out C3xDic5480(C3xDic5).35D4480,253
(C3xDic5).36D4 = (C2xC60).C4φ: D4/C2C22 ⊆ Out C3xDic52404(C3xDic5).36D4480,310
(C3xDic5).37D4 = D20:Dic3φ: D4/C2C22 ⊆ Out C3xDic51208(C3xDic5).37D4480,312
(C3xDic5).38D4 = Dic10:2Dic3φ: D4/C2C22 ⊆ Out C3xDic51208(C3xDic5).38D4480,314
(C3xDic5).39D4 = C5:(C12.D4)φ: D4/C2C22 ⊆ Out C3xDic51204(C3xDic5).39D4480,318
(C3xDic5).40D4 = C3xDic5.D4φ: D4/C2C22 ⊆ Out C3xDic52404(C3xDic5).40D4480,285
(C3xDic5).41D4 = C3xD20:C4φ: D4/C2C22 ⊆ Out C3xDic51208(C3xDic5).41D4480,287
(C3xDic5).42D4 = C3xQ8:F5φ: D4/C2C22 ⊆ Out C3xDic51208(C3xDic5).42D4480,289
(C3xDic5).43D4 = C3xC23.F5φ: D4/C2C22 ⊆ Out C3xDic51204(C3xDic5).43D4480,293
(C3xDic5).44D4 = D5xC24:C2φ: D4/C4C2 ⊆ Out C3xDic51204(C3xDic5).44D4480,323
(C3xDic5).45D4 = D5xD24φ: D4/C4C2 ⊆ Out C3xDic51204+(C3xDic5).45D4480,324
(C3xDic5).46D4 = D5xDic12φ: D4/C4C2 ⊆ Out C3xDic52404-(C3xDic5).46D4480,335
(C3xDic5).47D4 = C40.31D6φ: D4/C4C2 ⊆ Out C3xDic52404(C3xDic5).47D4480,345
(C3xDic5).48D4 = D24:7D5φ: D4/C4C2 ⊆ Out C3xDic52404-(C3xDic5).48D4480,346
(C3xDic5).49D4 = D120:C2φ: D4/C4C2 ⊆ Out C3xDic52404+(C3xDic5).49D4480,347
(C3xDic5).50D4 = Dic5.8D12φ: D4/C4C2 ⊆ Out C3xDic5240(C3xDic5).50D4480,426
(C3xDic5).51D4 = C60:Q8φ: D4/C4C2 ⊆ Out C3xDic5480(C3xDic5).51D4480,544
(C3xDic5).52D4 = C3xDic5.5D4φ: D4/C4C2 ⊆ Out C3xDic5240(C3xDic5).52D4480,678
(C3xDic5).53D4 = C3xC20:Q8φ: D4/C4C2 ⊆ Out C3xDic5480(C3xDic5).53D4480,681
(C3xDic5).54D4 = C3xD5xD8φ: D4/C4C2 ⊆ Out C3xDic51204(C3xDic5).54D4480,703
(C3xDic5).55D4 = C3xD5xSD16φ: D4/C4C2 ⊆ Out C3xDic51204(C3xDic5).55D4480,706
(C3xDic5).56D4 = C3xD5xQ16φ: D4/C4C2 ⊆ Out C3xDic52404(C3xDic5).56D4480,710
(C3xDic5).57D4 = C40.Dic3φ: D4/C4C2 ⊆ Out C3xDic52404(C3xDic5).57D4480,300
(C3xDic5).58D4 = C24.1F5φ: D4/C4C2 ⊆ Out C3xDic52404(C3xDic5).58D4480,301
(C3xDic5).59D4 = C60:C8φ: D4/C4C2 ⊆ Out C3xDic5480(C3xDic5).59D4480,306
(C3xDic5).60D4 = Dic5.13D12φ: D4/C4C2 ⊆ Out C3xDic5480(C3xDic5).60D4480,309
(C3xDic5).61D4 = C3xC40.C4φ: D4/C4C2 ⊆ Out C3xDic52404(C3xDic5).61D4480,275
(C3xDic5).62D4 = C3xD10.Q8φ: D4/C4C2 ⊆ Out C3xDic52404(C3xDic5).62D4480,276
(C3xDic5).63D4 = C3xC20:C8φ: D4/C4C2 ⊆ Out C3xDic5480(C3xDic5).63D4480,281
(C3xDic5).64D4 = C3xDic5:C8φ: D4/C4C2 ⊆ Out C3xDic5480(C3xDic5).64D4480,284
(C3xDic5).65D4 = D10:Dic6φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5).65D4480,425
(C3xDic5).66D4 = Dic10:3D6φ: D4/C22C2 ⊆ Out C3xDic51208+(C3xDic5).66D4480,554
(C3xDic5).67D4 = C60.8C23φ: D4/C22C2 ⊆ Out C3xDic52408-(C3xDic5).67D4480,560
(C3xDic5).68D4 = D12.24D10φ: D4/C22C2 ⊆ Out C3xDic52408-(C3xDic5).68D4480,566
(C3xDic5).69D4 = C60.16C23φ: D4/C22C2 ⊆ Out C3xDic52408+(C3xDic5).69D4480,568
(C3xDic5).70D4 = D20:D6φ: D4/C22C2 ⊆ Out C3xDic51208+(C3xDic5).70D4480,578
(C3xDic5).71D4 = D20.13D6φ: D4/C22C2 ⊆ Out C3xDic52408-(C3xDic5).71D4480,584
(C3xDic5).72D4 = D20.14D6φ: D4/C22C2 ⊆ Out C3xDic52408-(C3xDic5).72D4480,590
(C3xDic5).73D4 = D20.D6φ: D4/C22C2 ⊆ Out C3xDic52408+(C3xDic5).73D4480,592
(C3xDic5).74D4 = (C2xC30):Q8φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5).74D4480,650
(C3xDic5).75D4 = C3xDic5.14D4φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5).75D4480,671
(C3xDic5).76D4 = C3xD10:Q8φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5).76D4480,689
(C3xDic5).77D4 = C3xD8:D5φ: D4/C22C2 ⊆ Out C3xDic51204(C3xDic5).77D4480,704
(C3xDic5).78D4 = C3xD40:C2φ: D4/C22C2 ⊆ Out C3xDic51204(C3xDic5).78D4480,707
(C3xDic5).79D4 = C3xSD16:D5φ: D4/C22C2 ⊆ Out C3xDic52404(C3xDic5).79D4480,708
(C3xDic5).80D4 = C3xQ16:D5φ: D4/C22C2 ⊆ Out C3xDic52404(C3xDic5).80D4480,711
(C3xDic5).81D4 = C30.7M4(2)φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5).81D4480,308
(C3xDic5).82D4 = Dic10:Dic3φ: D4/C22C2 ⊆ Out C3xDic51208(C3xDic5).82D4480,313
(C3xDic5).83D4 = D20:2Dic3φ: D4/C22C2 ⊆ Out C3xDic51208(C3xDic5).83D4480,315
(C3xDic5).84D4 = C30.22M4(2)φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5).84D4480,317
(C3xDic5).85D4 = C3xD10:C8φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5).85D4480,283
(C3xDic5).86D4 = C3xD4:F5φ: D4/C22C2 ⊆ Out C3xDic51208(C3xDic5).86D4480,288
(C3xDic5).87D4 = C3xQ8:2F5φ: D4/C22C2 ⊆ Out C3xDic51208(C3xDic5).87D4480,290
(C3xDic5).88D4 = C3xC23.2F5φ: D4/C22C2 ⊆ Out C3xDic5240(C3xDic5).88D4480,292
(C3xDic5).89D4 = C3xD8:3D5φ: trivial image2404(C3xDic5).89D4480,705
(C3xDic5).90D4 = C3xSD16:3D5φ: trivial image2404(C3xDic5).90D4480,709
(C3xDic5).91D4 = C3xQ8.D10φ: trivial image2404(C3xDic5).91D4480,712

׿
x
:
Z
F
o
wr
Q
<