extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Dic5)⋊1D4 = Dic5⋊D12 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):1D4 | 480,492 |
(C3×Dic5)⋊2D4 = D30⋊D4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):2D4 | 480,496 |
(C3×Dic5)⋊3D4 = D30⋊6D4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):3D4 | 480,609 |
(C3×Dic5)⋊4D4 = (S3×C10)⋊D4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):4D4 | 480,641 |
(C3×Dic5)⋊5D4 = Dic15⋊5D4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):5D4 | 480,643 |
(C3×Dic5)⋊6D4 = Dic5⋊4D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):6D4 | 480,481 |
(C3×Dic5)⋊7D4 = Dic5×D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):7D4 | 480,491 |
(C3×Dic5)⋊8D4 = D60⋊17C4 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):8D4 | 480,494 |
(C3×Dic5)⋊9D4 = C20⋊D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):9D4 | 480,527 |
(C3×Dic5)⋊10D4 = C3×C20⋊D4 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):10D4 | 480,733 |
(C3×Dic5)⋊11D4 = D6⋊(C4×D5) | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):11D4 | 480,516 |
(C3×Dic5)⋊12D4 = C15⋊20(C4×D4) | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):12D4 | 480,520 |
(C3×Dic5)⋊13D4 = D10⋊D12 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):13D4 | 480,524 |
(C3×Dic5)⋊14D4 = Dic5×C3⋊D4 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):14D4 | 480,627 |
(C3×Dic5)⋊15D4 = C15⋊26(C4×D4) | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):15D4 | 480,628 |
(C3×Dic5)⋊16D4 = (C2×C10)⋊4D12 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):16D4 | 480,642 |
(C3×Dic5)⋊17D4 = C3×D10⋊D4 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):17D4 | 480,677 |
(C3×Dic5)⋊18D4 = C3×Dic5⋊D4 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5):18D4 | 480,732 |
(C3×Dic5)⋊19D4 = C3×Dic5⋊4D4 | φ: trivial image | 240 | | (C3xDic5):19D4 | 480,674 |
(C3×Dic5)⋊20D4 = C3×D20⋊8C4 | φ: trivial image | 240 | | (C3xDic5):20D4 | 480,686 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Dic5).1D4 = C24⋊D10 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 4+ | (C3xDic5).1D4 | 480,325 |
(C3×Dic5).2D4 = D24⋊D5 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 4 | (C3xDic5).2D4 | 480,326 |
(C3×Dic5).3D4 = Dic60⋊C2 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 4- | (C3xDic5).3D4 | 480,336 |
(C3×Dic5).4D4 = C24.2D10 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).4D4 | 480,337 |
(C3×Dic5).5D4 = (C2×C20).D6 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).5D4 | 480,402 |
(C3×Dic5).6D4 = Dic15⋊1Q8 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 480 | | (C3xDic5).6D4 | 480,403 |
(C3×Dic5).7D4 = D6⋊1Dic10 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).7D4 | 480,486 |
(C3×Dic5).8D4 = D30⋊Q8 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).8D4 | 480,487 |
(C3×Dic5).9D4 = D6⋊2Dic10 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).9D4 | 480,493 |
(C3×Dic5).10D4 = D30⋊2Q8 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).10D4 | 480,495 |
(C3×Dic5).11D4 = D5×D4⋊S3 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).11D4 | 480,553 |
(C3×Dic5).12D4 = D5×D4.S3 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8- | (C3xDic5).12D4 | 480,559 |
(C3×Dic5).13D4 = D12⋊10D10 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8- | (C3xDic5).13D4 | 480,565 |
(C3×Dic5).14D4 = D20.9D6 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).14D4 | 480,567 |
(C3×Dic5).15D4 = D5×Q8⋊2S3 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).15D4 | 480,577 |
(C3×Dic5).16D4 = D5×C3⋊Q16 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 8- | (C3xDic5).16D4 | 480,583 |
(C3×Dic5).17D4 = D12.27D10 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 8- | (C3xDic5).17D4 | 480,589 |
(C3×Dic5).18D4 = C60.39C23 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 8+ | (C3xDic5).18D4 | 480,591 |
(C3×Dic5).19D4 = C6.(D4×D5) | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).19D4 | 480,610 |
(C3×Dic5).20D4 = D60⋊C4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).20D4 | 480,227 |
(C3×Dic5).21D4 = D12⋊F5 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).21D4 | 480,228 |
(C3×Dic5).22D4 = Dic6⋊F5 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8- | (C3xDic5).22D4 | 480,229 |
(C3×Dic5).23D4 = Dic30⋊C4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8- | (C3xDic5).23D4 | 480,230 |
(C3×Dic5).24D4 = D12⋊4F5 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8- | (C3xDic5).24D4 | 480,231 |
(C3×Dic5).25D4 = D12⋊2F5 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8- | (C3xDic5).25D4 | 480,232 |
(C3×Dic5).26D4 = D60⋊2C4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).26D4 | 480,233 |
(C3×Dic5).27D4 = D60⋊5C4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).27D4 | 480,234 |
(C3×Dic5).28D4 = D10.Dic6 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 8 | (C3xDic5).28D4 | 480,237 |
(C3×Dic5).29D4 = D10.2Dic6 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 8 | (C3xDic5).29D4 | 480,238 |
(C3×Dic5).30D4 = Dic5.22D12 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).30D4 | 480,246 |
(C3×Dic5).31D4 = D30⋊C8 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).31D4 | 480,247 |
(C3×Dic5).32D4 = Dic5.D12 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).32D4 | 480,250 |
(C3×Dic5).33D4 = Dic5.4D12 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 8- | (C3xDic5).33D4 | 480,251 |
(C3×Dic5).34D4 = C30.4M4(2) | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 480 | | (C3xDic5).34D4 | 480,252 |
(C3×Dic5).35D4 = Dic15⋊C8 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 480 | | (C3xDic5).35D4 | 480,253 |
(C3×Dic5).36D4 = (C2×C60).C4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).36D4 | 480,310 |
(C3×Dic5).37D4 = D20⋊Dic3 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8 | (C3xDic5).37D4 | 480,312 |
(C3×Dic5).38D4 = Dic10⋊2Dic3 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8 | (C3xDic5).38D4 | 480,314 |
(C3×Dic5).39D4 = C5⋊(C12.D4) | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 4 | (C3xDic5).39D4 | 480,318 |
(C3×Dic5).40D4 = C3×Dic5.D4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).40D4 | 480,285 |
(C3×Dic5).41D4 = C3×D20⋊C4 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8 | (C3xDic5).41D4 | 480,287 |
(C3×Dic5).42D4 = C3×Q8⋊F5 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 8 | (C3xDic5).42D4 | 480,289 |
(C3×Dic5).43D4 = C3×C23.F5 | φ: D4/C2 → C22 ⊆ Out C3×Dic5 | 120 | 4 | (C3xDic5).43D4 | 480,293 |
(C3×Dic5).44D4 = D5×C24⋊C2 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 120 | 4 | (C3xDic5).44D4 | 480,323 |
(C3×Dic5).45D4 = D5×D24 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 120 | 4+ | (C3xDic5).45D4 | 480,324 |
(C3×Dic5).46D4 = D5×Dic12 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | 4- | (C3xDic5).46D4 | 480,335 |
(C3×Dic5).47D4 = C40.31D6 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).47D4 | 480,345 |
(C3×Dic5).48D4 = D24⋊7D5 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | 4- | (C3xDic5).48D4 | 480,346 |
(C3×Dic5).49D4 = D120⋊C2 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | 4+ | (C3xDic5).49D4 | 480,347 |
(C3×Dic5).50D4 = Dic5.8D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).50D4 | 480,426 |
(C3×Dic5).51D4 = C60⋊Q8 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 480 | | (C3xDic5).51D4 | 480,544 |
(C3×Dic5).52D4 = C3×Dic5.5D4 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).52D4 | 480,678 |
(C3×Dic5).53D4 = C3×C20⋊Q8 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 480 | | (C3xDic5).53D4 | 480,681 |
(C3×Dic5).54D4 = C3×D5×D8 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 120 | 4 | (C3xDic5).54D4 | 480,703 |
(C3×Dic5).55D4 = C3×D5×SD16 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 120 | 4 | (C3xDic5).55D4 | 480,706 |
(C3×Dic5).56D4 = C3×D5×Q16 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).56D4 | 480,710 |
(C3×Dic5).57D4 = C40.Dic3 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).57D4 | 480,300 |
(C3×Dic5).58D4 = C24.1F5 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).58D4 | 480,301 |
(C3×Dic5).59D4 = C60⋊C8 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 480 | | (C3xDic5).59D4 | 480,306 |
(C3×Dic5).60D4 = Dic5.13D12 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 480 | | (C3xDic5).60D4 | 480,309 |
(C3×Dic5).61D4 = C3×C40.C4 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).61D4 | 480,275 |
(C3×Dic5).62D4 = C3×D10.Q8 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).62D4 | 480,276 |
(C3×Dic5).63D4 = C3×C20⋊C8 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 480 | | (C3xDic5).63D4 | 480,281 |
(C3×Dic5).64D4 = C3×Dic5⋊C8 | φ: D4/C4 → C2 ⊆ Out C3×Dic5 | 480 | | (C3xDic5).64D4 | 480,284 |
(C3×Dic5).65D4 = D10⋊Dic6 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).65D4 | 480,425 |
(C3×Dic5).66D4 = Dic10⋊3D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).66D4 | 480,554 |
(C3×Dic5).67D4 = C60.8C23 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | 8- | (C3xDic5).67D4 | 480,560 |
(C3×Dic5).68D4 = D12.24D10 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | 8- | (C3xDic5).68D4 | 480,566 |
(C3×Dic5).69D4 = C60.16C23 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | 8+ | (C3xDic5).69D4 | 480,568 |
(C3×Dic5).70D4 = D20⋊D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 120 | 8+ | (C3xDic5).70D4 | 480,578 |
(C3×Dic5).71D4 = D20.13D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | 8- | (C3xDic5).71D4 | 480,584 |
(C3×Dic5).72D4 = D20.14D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | 8- | (C3xDic5).72D4 | 480,590 |
(C3×Dic5).73D4 = D20.D6 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | 8+ | (C3xDic5).73D4 | 480,592 |
(C3×Dic5).74D4 = (C2×C30)⋊Q8 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).74D4 | 480,650 |
(C3×Dic5).75D4 = C3×Dic5.14D4 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).75D4 | 480,671 |
(C3×Dic5).76D4 = C3×D10⋊Q8 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).76D4 | 480,689 |
(C3×Dic5).77D4 = C3×D8⋊D5 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 120 | 4 | (C3xDic5).77D4 | 480,704 |
(C3×Dic5).78D4 = C3×D40⋊C2 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 120 | 4 | (C3xDic5).78D4 | 480,707 |
(C3×Dic5).79D4 = C3×SD16⋊D5 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).79D4 | 480,708 |
(C3×Dic5).80D4 = C3×Q16⋊D5 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | 4 | (C3xDic5).80D4 | 480,711 |
(C3×Dic5).81D4 = C30.7M4(2) | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).81D4 | 480,308 |
(C3×Dic5).82D4 = Dic10⋊Dic3 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 120 | 8 | (C3xDic5).82D4 | 480,313 |
(C3×Dic5).83D4 = D20⋊2Dic3 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 120 | 8 | (C3xDic5).83D4 | 480,315 |
(C3×Dic5).84D4 = C30.22M4(2) | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).84D4 | 480,317 |
(C3×Dic5).85D4 = C3×D10⋊C8 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).85D4 | 480,283 |
(C3×Dic5).86D4 = C3×D4⋊F5 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 120 | 8 | (C3xDic5).86D4 | 480,288 |
(C3×Dic5).87D4 = C3×Q8⋊2F5 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 120 | 8 | (C3xDic5).87D4 | 480,290 |
(C3×Dic5).88D4 = C3×C23.2F5 | φ: D4/C22 → C2 ⊆ Out C3×Dic5 | 240 | | (C3xDic5).88D4 | 480,292 |
(C3×Dic5).89D4 = C3×D8⋊3D5 | φ: trivial image | 240 | 4 | (C3xDic5).89D4 | 480,705 |
(C3×Dic5).90D4 = C3×SD16⋊3D5 | φ: trivial image | 240 | 4 | (C3xDic5).90D4 | 480,709 |
(C3×Dic5).91D4 = C3×Q8.D10 | φ: trivial image | 240 | 4 | (C3xDic5).91D4 | 480,712 |