Copied to
clipboard

G = D6⋊SD16order 192 = 26·3

1st semidirect product of D6 and SD16 acting via SD16/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D61SD16, C3⋊C820D4, C31(C88D4), C4⋊C4.10D6, D4⋊C43S3, C4.D122C2, (C2×D4).26D6, C4.159(S3×D4), (C2×C8).203D6, D63D4.3C2, C12.8(C4○D4), C6.23(C4○D8), C12.109(C2×D4), C12.Q85C2, C2.13(S3×SD16), C6.25(C2×SD16), C4.25(C4○D12), C2.9(D83S3), C6.16(C4⋊D4), C2.Dic1225C2, (C2×Dic3).90D4, (C6×D4).39C22, (C22×S3).48D4, C22.176(S3×D4), C2.19(Dic3⋊D4), (C2×C24).228C22, (C2×C12).218C23, C4⋊Dic3.72C22, (C2×Dic6).57C22, (S3×C2×C8)⋊19C2, (C2×D4.S3)⋊4C2, (C2×C6).231(C2×D4), (C3×D4⋊C4)⋊28C2, (C3×C4⋊C4).19C22, (C2×C3⋊C8).213C22, (S3×C2×C4).225C22, (C2×C4).325(C22×S3), SmallGroup(192,337)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D6⋊SD16
C1C3C6C12C2×C12S3×C2×C4S3×C2×C8 — D6⋊SD16
C3C6C2×C12 — D6⋊SD16
C1C22C2×C4D4⋊C4

Generators and relations for D6⋊SD16
 G = < a,b,c,d | a6=b2=c8=d2=1, bab=cac-1=a-1, ad=da, cbc-1=a4b, dbd=a3b, dcd=c3 >

Subgroups: 376 in 124 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, D4⋊C4, Q8⋊C4, C4.Q8, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, S3×C8, C2×C3⋊C8, C4⋊Dic3, C4⋊Dic3, D6⋊C4, D4.S3, C6.D4, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C2×C3⋊D4, C6×D4, C88D4, C12.Q8, C2.Dic12, C3×D4⋊C4, C4.D12, S3×C2×C8, C2×D4.S3, D63D4, D6⋊SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C4○D4, C22×S3, C4⋊D4, C2×SD16, C4○D8, C4○D12, S3×D4, C88D4, Dic3⋊D4, D83S3, S3×SD16, D6⋊SD16

Smallest permutation representation of D6⋊SD16
On 96 points
Generators in S96
(1 10 78 53 26 85)(2 86 27 54 79 11)(3 12 80 55 28 87)(4 88 29 56 73 13)(5 14 74 49 30 81)(6 82 31 50 75 15)(7 16 76 51 32 83)(8 84 25 52 77 9)(17 65 39 41 64 95)(18 96 57 42 40 66)(19 67 33 43 58 89)(20 90 59 44 34 68)(21 69 35 45 60 91)(22 92 61 46 36 70)(23 71 37 47 62 93)(24 94 63 48 38 72)
(1 70)(2 93)(3 72)(4 95)(5 66)(6 89)(7 68)(8 91)(9 21)(10 36)(11 23)(12 38)(13 17)(14 40)(15 19)(16 34)(18 81)(20 83)(22 85)(24 87)(25 45)(26 92)(27 47)(28 94)(29 41)(30 96)(31 43)(32 90)(33 50)(35 52)(37 54)(39 56)(42 74)(44 76)(46 78)(48 80)(49 57)(51 59)(53 61)(55 63)(58 82)(60 84)(62 86)(64 88)(65 73)(67 75)(69 77)(71 79)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 47)(18 42)(19 45)(20 48)(21 43)(22 46)(23 41)(24 44)(25 31)(27 29)(28 32)(33 91)(34 94)(35 89)(36 92)(37 95)(38 90)(39 93)(40 96)(50 52)(51 55)(54 56)(57 66)(58 69)(59 72)(60 67)(61 70)(62 65)(63 68)(64 71)(73 79)(75 77)(76 80)(82 84)(83 87)(86 88)

G:=sub<Sym(96)| (1,10,78,53,26,85)(2,86,27,54,79,11)(3,12,80,55,28,87)(4,88,29,56,73,13)(5,14,74,49,30,81)(6,82,31,50,75,15)(7,16,76,51,32,83)(8,84,25,52,77,9)(17,65,39,41,64,95)(18,96,57,42,40,66)(19,67,33,43,58,89)(20,90,59,44,34,68)(21,69,35,45,60,91)(22,92,61,46,36,70)(23,71,37,47,62,93)(24,94,63,48,38,72), (1,70)(2,93)(3,72)(4,95)(5,66)(6,89)(7,68)(8,91)(9,21)(10,36)(11,23)(12,38)(13,17)(14,40)(15,19)(16,34)(18,81)(20,83)(22,85)(24,87)(25,45)(26,92)(27,47)(28,94)(29,41)(30,96)(31,43)(32,90)(33,50)(35,52)(37,54)(39,56)(42,74)(44,76)(46,78)(48,80)(49,57)(51,59)(53,61)(55,63)(58,82)(60,84)(62,86)(64,88)(65,73)(67,75)(69,77)(71,79), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,47)(18,42)(19,45)(20,48)(21,43)(22,46)(23,41)(24,44)(25,31)(27,29)(28,32)(33,91)(34,94)(35,89)(36,92)(37,95)(38,90)(39,93)(40,96)(50,52)(51,55)(54,56)(57,66)(58,69)(59,72)(60,67)(61,70)(62,65)(63,68)(64,71)(73,79)(75,77)(76,80)(82,84)(83,87)(86,88)>;

G:=Group( (1,10,78,53,26,85)(2,86,27,54,79,11)(3,12,80,55,28,87)(4,88,29,56,73,13)(5,14,74,49,30,81)(6,82,31,50,75,15)(7,16,76,51,32,83)(8,84,25,52,77,9)(17,65,39,41,64,95)(18,96,57,42,40,66)(19,67,33,43,58,89)(20,90,59,44,34,68)(21,69,35,45,60,91)(22,92,61,46,36,70)(23,71,37,47,62,93)(24,94,63,48,38,72), (1,70)(2,93)(3,72)(4,95)(5,66)(6,89)(7,68)(8,91)(9,21)(10,36)(11,23)(12,38)(13,17)(14,40)(15,19)(16,34)(18,81)(20,83)(22,85)(24,87)(25,45)(26,92)(27,47)(28,94)(29,41)(30,96)(31,43)(32,90)(33,50)(35,52)(37,54)(39,56)(42,74)(44,76)(46,78)(48,80)(49,57)(51,59)(53,61)(55,63)(58,82)(60,84)(62,86)(64,88)(65,73)(67,75)(69,77)(71,79), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,47)(18,42)(19,45)(20,48)(21,43)(22,46)(23,41)(24,44)(25,31)(27,29)(28,32)(33,91)(34,94)(35,89)(36,92)(37,95)(38,90)(39,93)(40,96)(50,52)(51,55)(54,56)(57,66)(58,69)(59,72)(60,67)(61,70)(62,65)(63,68)(64,71)(73,79)(75,77)(76,80)(82,84)(83,87)(86,88) );

G=PermutationGroup([[(1,10,78,53,26,85),(2,86,27,54,79,11),(3,12,80,55,28,87),(4,88,29,56,73,13),(5,14,74,49,30,81),(6,82,31,50,75,15),(7,16,76,51,32,83),(8,84,25,52,77,9),(17,65,39,41,64,95),(18,96,57,42,40,66),(19,67,33,43,58,89),(20,90,59,44,34,68),(21,69,35,45,60,91),(22,92,61,46,36,70),(23,71,37,47,62,93),(24,94,63,48,38,72)], [(1,70),(2,93),(3,72),(4,95),(5,66),(6,89),(7,68),(8,91),(9,21),(10,36),(11,23),(12,38),(13,17),(14,40),(15,19),(16,34),(18,81),(20,83),(22,85),(24,87),(25,45),(26,92),(27,47),(28,94),(29,41),(30,96),(31,43),(32,90),(33,50),(35,52),(37,54),(39,56),(42,74),(44,76),(46,78),(48,80),(49,57),(51,59),(53,61),(55,63),(58,82),(60,84),(62,86),(64,88),(65,73),(67,75),(69,77),(71,79)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,47),(18,42),(19,45),(20,48),(21,43),(22,46),(23,41),(24,44),(25,31),(27,29),(28,32),(33,91),(34,94),(35,89),(36,92),(37,95),(38,90),(39,93),(40,96),(50,52),(51,55),(54,56),(57,66),(58,69),(59,72),(60,67),(61,70),(62,65),(63,68),(64,71),(73,79),(75,77),(76,80),(82,84),(83,87),(86,88)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G6A6B6C6D6E8A8B8C8D8E8F8G8H12A12B12C12D24A24B24C24D
order12222223444444466666888888881212121224242424
size11116682226682424222882222666644884444

36 irreducible representations

dim11111111222222222224444
type+++++++++++++++++-
imageC1C2C2C2C2C2C2C2S3D4D4D4D6D6D6C4○D4SD16C4○D8C4○D12S3×D4S3×D4D83S3S3×SD16
kernelD6⋊SD16C12.Q8C2.Dic12C3×D4⋊C4C4.D12S3×C2×C8C2×D4.S3D63D4D4⋊C4C3⋊C8C2×Dic3C22×S3C4⋊C4C2×C8C2×D4C12D6C6C4C4C22C2C2
# reps11111111121111124441122

Matrix representation of D6⋊SD16 in GL4(𝔽73) generated by

65000
66900
00720
00072
,
571800
711600
004634
004327
,
481900
172500
00033
003161
,
1000
187200
0010
006672
G:=sub<GL(4,GF(73))| [65,66,0,0,0,9,0,0,0,0,72,0,0,0,0,72],[57,71,0,0,18,16,0,0,0,0,46,43,0,0,34,27],[48,17,0,0,19,25,0,0,0,0,0,31,0,0,33,61],[1,18,0,0,0,72,0,0,0,0,1,66,0,0,0,72] >;

D6⋊SD16 in GAP, Magma, Sage, TeX

D_6\rtimes {\rm SD}_{16}
% in TeX

G:=Group("D6:SD16");
// GroupNames label

G:=SmallGroup(192,337);
// by ID

G=gap.SmallGroup(192,337);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,219,297,136,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^4*b,d*b*d=a^3*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽