Copied to
clipboard

G = D201D4order 320 = 26·5

1st semidirect product of D20 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D201D4, Dic101D4, C23.7D20, M4(2)⋊2D10, C4.79(D4×D5), C20⋊D41C2, C8⋊D105C2, C51(D44D4), C20.92(C2×D4), C4.D42D5, D207C42C2, D46D102C2, (C2×D4).14D10, (C2×C20).4C23, C10.16C22≀C2, (C2×D20)⋊11C22, (C4×Dic5)⋊2C22, C4○D20.2C22, (C22×C10).20D4, C22.11(C2×D20), (D4×C10).14C22, (C5×M4(2))⋊9C22, C2.19(C22⋊D20), (C5×C4.D4)⋊4C2, (C2×C10).21(C2×D4), (C2×C4).4(C22×D5), SmallGroup(320,374)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D201D4
C1C5C10C20C2×C20C4○D20D46D10 — D201D4
C5C10C2×C20 — D201D4
C1C2C2×C4C4.D4

Generators and relations for D201D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=dad=a-1, cac-1=a9, cbc-1=a13b, dbd=a3b, dcd=c-1 >

Subgroups: 942 in 168 conjugacy classes, 39 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, M4(2), D8, SD16, C2×D4, C2×D4, C4○D4, Dic5, C20, D10, C2×C10, C2×C10, C4.D4, C4≀C2, C41D4, C8⋊C22, 2+ 1+4, C40, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, D44D4, C40⋊C2, D40, C4×Dic5, C5×M4(2), C2×D20, C4○D20, D4×D5, D42D5, C2×C5⋊D4, D4×C10, D207C4, C5×C4.D4, C8⋊D10, C20⋊D4, D46D10, D201D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, D20, C22×D5, D44D4, C2×D20, D4×D5, C22⋊D20, D201D4

Smallest permutation representation of D201D4
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 24)(14 23)(15 22)(16 21)(17 40)(18 39)(19 38)(20 37)
(1 6 11 16)(2 15 12 5)(3 4 13 14)(7 20 17 10)(8 9 18 19)(21 33)(23 31)(24 40)(25 29)(26 38)(28 36)(30 34)(35 39)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 28)(22 27)(23 26)(24 25)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,40)(18,39)(19,38)(20,37), (1,6,11,16)(2,15,12,5)(3,4,13,14)(7,20,17,10)(8,9,18,19)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,40)(18,39)(19,38)(20,37), (1,6,11,16)(2,15,12,5)(3,4,13,14)(7,20,17,10)(8,9,18,19)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,24),(14,23),(15,22),(16,21),(17,40),(18,39),(19,38),(20,37)], [(1,6,11,16),(2,15,12,5),(3,4,13,14),(7,20,17,10),(8,9,18,19),(21,33),(23,31),(24,40),(25,29),(26,38),(28,36),(30,34),(35,39)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,28),(22,27),(23,26),(24,25),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F5A5B8A8B10A10B10C10D10E10F10G10H20A20B20C20D40A···40H
order12222222444444558810101010101010102020202040···40
size11244202040222020202022882244888844448···8

38 irreducible representations

dim1111112222222448
type++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D5D10D10D20D44D4D4×D5D201D4
kernelD201D4D207C4C5×C4.D4C8⋊D10C20⋊D4D46D10Dic10D20C22×C10C4.D4M4(2)C2×D4C23C5C4C1
# reps1212112222428242

Matrix representation of D201D4 in GL6(𝔽41)

6400000
3610000
0004000
001000
002828405
0003161
,
2110000
37390000
000010
002828405
001000
003232013
,
35340000
560000
000100
0040000
0000400
00038040
,
35340000
560000
0040000
000100
002828405
003001

G:=sub<GL(6,GF(41))| [6,36,0,0,0,0,40,1,0,0,0,0,0,0,0,1,28,0,0,0,40,0,28,3,0,0,0,0,40,16,0,0,0,0,5,1],[2,37,0,0,0,0,11,39,0,0,0,0,0,0,0,28,1,32,0,0,0,28,0,32,0,0,1,40,0,0,0,0,0,5,0,13],[35,5,0,0,0,0,34,6,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,38,0,0,0,0,40,0,0,0,0,0,0,40],[35,5,0,0,0,0,34,6,0,0,0,0,0,0,40,0,28,3,0,0,0,1,28,0,0,0,0,0,40,0,0,0,0,0,5,1] >;

D201D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_1D_4
% in TeX

G:=Group("D20:1D4");
// GroupNames label

G:=SmallGroup(320,374);
// by ID

G=gap.SmallGroup(320,374);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,219,226,1123,570,136,1684,438,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^13*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽