metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20⋊1D4, Dic10⋊1D4, C23.7D20, M4(2)⋊2D10, C4.79(D4×D5), C20⋊D4⋊1C2, C8⋊D10⋊5C2, C5⋊1(D4⋊4D4), C20.92(C2×D4), C4.D4⋊2D5, D20⋊7C4⋊2C2, D4⋊6D10⋊2C2, (C2×D4).14D10, (C2×C20).4C23, C10.16C22≀C2, (C2×D20)⋊11C22, (C4×Dic5)⋊2C22, C4○D20.2C22, (C22×C10).20D4, C22.11(C2×D20), (D4×C10).14C22, (C5×M4(2))⋊9C22, C2.19(C22⋊D20), (C5×C4.D4)⋊4C2, (C2×C10).21(C2×D4), (C2×C4).4(C22×D5), SmallGroup(320,374)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D20⋊1D4
G = < a,b,c,d | a20=b2=c4=d2=1, bab=dad=a-1, cac-1=a9, cbc-1=a13b, dbd=a3b, dcd=c-1 >
Subgroups: 942 in 168 conjugacy classes, 39 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, M4(2), D8, SD16, C2×D4, C2×D4, C4○D4, Dic5, C20, D10, C2×C10, C2×C10, C4.D4, C4≀C2, C4⋊1D4, C8⋊C22, 2+ 1+4, C40, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, D4⋊4D4, C40⋊C2, D40, C4×Dic5, C5×M4(2), C2×D20, C4○D20, D4×D5, D4⋊2D5, C2×C5⋊D4, D4×C10, D20⋊7C4, C5×C4.D4, C8⋊D10, C20⋊D4, D4⋊6D10, D20⋊1D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, D20, C22×D5, D4⋊4D4, C2×D20, D4×D5, C22⋊D20, D20⋊1D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 24)(14 23)(15 22)(16 21)(17 40)(18 39)(19 38)(20 37)
(1 6 11 16)(2 15 12 5)(3 4 13 14)(7 20 17 10)(8 9 18 19)(21 33)(23 31)(24 40)(25 29)(26 38)(28 36)(30 34)(35 39)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 28)(22 27)(23 26)(24 25)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,40)(18,39)(19,38)(20,37), (1,6,11,16)(2,15,12,5)(3,4,13,14)(7,20,17,10)(8,9,18,19)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,40)(18,39)(19,38)(20,37), (1,6,11,16)(2,15,12,5)(3,4,13,14)(7,20,17,10)(8,9,18,19)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,24),(14,23),(15,22),(16,21),(17,40),(18,39),(19,38),(20,37)], [(1,6,11,16),(2,15,12,5),(3,4,13,14),(7,20,17,10),(8,9,18,19),(21,33),(23,31),(24,40),(25,29),(26,38),(28,36),(30,34),(35,39)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,28),(22,27),(23,26),(24,25),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 20A | 20B | 20C | 20D | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 4 | 4 | 20 | 20 | 40 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | 2 | 8 | 8 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | D10 | D10 | D20 | D4⋊4D4 | D4×D5 | D20⋊1D4 |
kernel | D20⋊1D4 | D20⋊7C4 | C5×C4.D4 | C8⋊D10 | C20⋊D4 | D4⋊6D10 | Dic10 | D20 | C22×C10 | C4.D4 | M4(2) | C2×D4 | C23 | C5 | C4 | C1 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 8 | 2 | 4 | 2 |
Matrix representation of D20⋊1D4 ►in GL6(𝔽41)
6 | 40 | 0 | 0 | 0 | 0 |
36 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 28 | 40 | 5 |
0 | 0 | 0 | 3 | 16 | 1 |
2 | 11 | 0 | 0 | 0 | 0 |
37 | 39 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 28 | 28 | 40 | 5 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 32 | 32 | 0 | 13 |
35 | 34 | 0 | 0 | 0 | 0 |
5 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 38 | 0 | 40 |
35 | 34 | 0 | 0 | 0 | 0 |
5 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 28 | 28 | 40 | 5 |
0 | 0 | 3 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [6,36,0,0,0,0,40,1,0,0,0,0,0,0,0,1,28,0,0,0,40,0,28,3,0,0,0,0,40,16,0,0,0,0,5,1],[2,37,0,0,0,0,11,39,0,0,0,0,0,0,0,28,1,32,0,0,0,28,0,32,0,0,1,40,0,0,0,0,0,5,0,13],[35,5,0,0,0,0,34,6,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,38,0,0,0,0,40,0,0,0,0,0,0,40],[35,5,0,0,0,0,34,6,0,0,0,0,0,0,40,0,28,3,0,0,0,1,28,0,0,0,0,0,40,0,0,0,0,0,5,1] >;
D20⋊1D4 in GAP, Magma, Sage, TeX
D_{20}\rtimes_1D_4
% in TeX
G:=Group("D20:1D4");
// GroupNames label
G:=SmallGroup(320,374);
// by ID
G=gap.SmallGroup(320,374);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,219,226,1123,570,136,1684,438,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^13*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations