Copied to
clipboard

G = C2×C327D8order 288 = 25·32

Direct product of C2 and C327D8

direct product, metabelian, supersoluble, monomial

Aliases: C2×C327D8, C62.130D4, (C3×C6)⋊7D8, (C6×D4)⋊1S3, C63(D4⋊S3), (C3×D4)⋊14D6, C3214(C2×D8), (C3×C12).97D4, (C2×C12).149D6, C12.56(C3⋊D4), C12.97(C22×S3), C4.5(C327D4), C12⋊S318C22, (C6×C12).140C22, (C3×C12).101C23, C324C822C22, (D4×C32)⋊16C22, C22.21(C327D4), (D4×C3×C6)⋊5C2, D43(C2×C3⋊S3), C34(C2×D4⋊S3), (C2×D4)⋊1(C3⋊S3), (C2×C324C8)⋊9C2, (C3×C6).278(C2×D4), C6.119(C2×C3⋊D4), (C2×C12⋊S3)⋊14C2, C4.11(C22×C3⋊S3), C2.8(C2×C327D4), (C2×C6).98(C3⋊D4), (C2×C4).46(C2×C3⋊S3), SmallGroup(288,788)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C2×C327D8
C1C3C32C3×C6C3×C12C12⋊S3C2×C12⋊S3 — C2×C327D8
C32C3×C6C3×C12 — C2×C327D8
C1C22C2×C4C2×D4

Generators and relations for C2×C327D8
 G = < a,b,c,d,e | a2=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=b-1, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 980 in 228 conjugacy classes, 77 normal (17 characteristic)
C1, C2, C2 [×2], C2 [×4], C3 [×4], C4 [×2], C22, C22 [×8], S3 [×8], C6 [×12], C6 [×8], C8 [×2], C2×C4, D4 [×2], D4 [×4], C23 [×2], C32, C12 [×8], D6 [×16], C2×C6 [×4], C2×C6 [×16], C2×C8, D8 [×4], C2×D4, C2×D4, C3⋊S3 [×2], C3×C6, C3×C6 [×2], C3×C6 [×2], C3⋊C8 [×8], D12 [×12], C2×C12 [×4], C3×D4 [×8], C3×D4 [×4], C22×S3 [×4], C22×C6 [×4], C2×D8, C3×C12 [×2], C2×C3⋊S3 [×4], C62, C62 [×4], C2×C3⋊C8 [×4], D4⋊S3 [×16], C2×D12 [×4], C6×D4 [×4], C324C8 [×2], C12⋊S3 [×2], C12⋊S3, C6×C12, D4×C32 [×2], D4×C32, C22×C3⋊S3, C2×C62, C2×D4⋊S3 [×4], C2×C324C8, C327D8 [×4], C2×C12⋊S3, D4×C3×C6, C2×C327D8
Quotients: C1, C2 [×7], C22 [×7], S3 [×4], D4 [×2], C23, D6 [×12], D8 [×2], C2×D4, C3⋊S3, C3⋊D4 [×8], C22×S3 [×4], C2×D8, C2×C3⋊S3 [×3], D4⋊S3 [×8], C2×C3⋊D4 [×4], C327D4 [×2], C22×C3⋊S3, C2×D4⋊S3 [×4], C327D8 [×2], C2×C327D4, C2×C327D8

Smallest permutation representation of C2×C327D8
On 144 points
Generators in S144
(1 60)(2 61)(3 62)(4 63)(5 64)(6 57)(7 58)(8 59)(9 76)(10 77)(11 78)(12 79)(13 80)(14 73)(15 74)(16 75)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 41)(24 42)(25 138)(26 139)(27 140)(28 141)(29 142)(30 143)(31 144)(32 137)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)(49 99)(50 100)(51 101)(52 102)(53 103)(54 104)(55 97)(56 98)(81 127)(82 128)(83 121)(84 122)(85 123)(86 124)(87 125)(88 126)(89 129)(90 130)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(105 119)(106 120)(107 113)(108 114)(109 115)(110 116)(111 117)(112 118)
(1 27 133)(2 134 28)(3 29 135)(4 136 30)(5 31 129)(6 130 32)(7 25 131)(8 132 26)(9 70 110)(10 111 71)(11 72 112)(12 105 65)(13 66 106)(14 107 67)(15 68 108)(16 109 69)(17 84 55)(18 56 85)(19 86 49)(20 50 87)(21 88 51)(22 52 81)(23 82 53)(24 54 83)(33 79 119)(34 120 80)(35 73 113)(36 114 74)(37 75 115)(38 116 76)(39 77 117)(40 118 78)(41 128 103)(42 104 121)(43 122 97)(44 98 123)(45 124 99)(46 100 125)(47 126 101)(48 102 127)(57 90 137)(58 138 91)(59 92 139)(60 140 93)(61 94 141)(62 142 95)(63 96 143)(64 144 89)
(1 20 13)(2 14 21)(3 22 15)(4 16 23)(5 24 9)(6 10 17)(7 18 11)(8 12 19)(25 56 72)(26 65 49)(27 50 66)(28 67 51)(29 52 68)(30 69 53)(31 54 70)(32 71 55)(33 99 139)(34 140 100)(35 101 141)(36 142 102)(37 103 143)(38 144 104)(39 97 137)(40 138 98)(41 63 75)(42 76 64)(43 57 77)(44 78 58)(45 59 79)(46 80 60)(47 61 73)(48 74 62)(81 108 135)(82 136 109)(83 110 129)(84 130 111)(85 112 131)(86 132 105)(87 106 133)(88 134 107)(89 121 116)(90 117 122)(91 123 118)(92 119 124)(93 125 120)(94 113 126)(95 127 114)(96 115 128)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(2 8)(3 7)(4 6)(9 24)(10 23)(11 22)(12 21)(13 20)(14 19)(15 18)(16 17)(25 135)(26 134)(27 133)(28 132)(29 131)(30 130)(31 129)(32 136)(33 126)(34 125)(35 124)(36 123)(37 122)(38 121)(39 128)(40 127)(41 77)(42 76)(43 75)(44 74)(45 73)(46 80)(47 79)(48 78)(49 107)(50 106)(51 105)(52 112)(53 111)(54 110)(55 109)(56 108)(57 63)(58 62)(59 61)(65 88)(66 87)(67 86)(68 85)(69 84)(70 83)(71 82)(72 81)(89 144)(90 143)(91 142)(92 141)(93 140)(94 139)(95 138)(96 137)(97 115)(98 114)(99 113)(100 120)(101 119)(102 118)(103 117)(104 116)

G:=sub<Sym(144)| (1,60)(2,61)(3,62)(4,63)(5,64)(6,57)(7,58)(8,59)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,144)(32,137)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,97)(56,98)(81,127)(82,128)(83,121)(84,122)(85,123)(86,124)(87,125)(88,126)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(105,119)(106,120)(107,113)(108,114)(109,115)(110,116)(111,117)(112,118), (1,27,133)(2,134,28)(3,29,135)(4,136,30)(5,31,129)(6,130,32)(7,25,131)(8,132,26)(9,70,110)(10,111,71)(11,72,112)(12,105,65)(13,66,106)(14,107,67)(15,68,108)(16,109,69)(17,84,55)(18,56,85)(19,86,49)(20,50,87)(21,88,51)(22,52,81)(23,82,53)(24,54,83)(33,79,119)(34,120,80)(35,73,113)(36,114,74)(37,75,115)(38,116,76)(39,77,117)(40,118,78)(41,128,103)(42,104,121)(43,122,97)(44,98,123)(45,124,99)(46,100,125)(47,126,101)(48,102,127)(57,90,137)(58,138,91)(59,92,139)(60,140,93)(61,94,141)(62,142,95)(63,96,143)(64,144,89), (1,20,13)(2,14,21)(3,22,15)(4,16,23)(5,24,9)(6,10,17)(7,18,11)(8,12,19)(25,56,72)(26,65,49)(27,50,66)(28,67,51)(29,52,68)(30,69,53)(31,54,70)(32,71,55)(33,99,139)(34,140,100)(35,101,141)(36,142,102)(37,103,143)(38,144,104)(39,97,137)(40,138,98)(41,63,75)(42,76,64)(43,57,77)(44,78,58)(45,59,79)(46,80,60)(47,61,73)(48,74,62)(81,108,135)(82,136,109)(83,110,129)(84,130,111)(85,112,131)(86,132,105)(87,106,133)(88,134,107)(89,121,116)(90,117,122)(91,123,118)(92,119,124)(93,125,120)(94,113,126)(95,127,114)(96,115,128), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,8)(3,7)(4,6)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)(25,135)(26,134)(27,133)(28,132)(29,131)(30,130)(31,129)(32,136)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,128)(40,127)(41,77)(42,76)(43,75)(44,74)(45,73)(46,80)(47,79)(48,78)(49,107)(50,106)(51,105)(52,112)(53,111)(54,110)(55,109)(56,108)(57,63)(58,62)(59,61)(65,88)(66,87)(67,86)(68,85)(69,84)(70,83)(71,82)(72,81)(89,144)(90,143)(91,142)(92,141)(93,140)(94,139)(95,138)(96,137)(97,115)(98,114)(99,113)(100,120)(101,119)(102,118)(103,117)(104,116)>;

G:=Group( (1,60)(2,61)(3,62)(4,63)(5,64)(6,57)(7,58)(8,59)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,144)(32,137)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,97)(56,98)(81,127)(82,128)(83,121)(84,122)(85,123)(86,124)(87,125)(88,126)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(105,119)(106,120)(107,113)(108,114)(109,115)(110,116)(111,117)(112,118), (1,27,133)(2,134,28)(3,29,135)(4,136,30)(5,31,129)(6,130,32)(7,25,131)(8,132,26)(9,70,110)(10,111,71)(11,72,112)(12,105,65)(13,66,106)(14,107,67)(15,68,108)(16,109,69)(17,84,55)(18,56,85)(19,86,49)(20,50,87)(21,88,51)(22,52,81)(23,82,53)(24,54,83)(33,79,119)(34,120,80)(35,73,113)(36,114,74)(37,75,115)(38,116,76)(39,77,117)(40,118,78)(41,128,103)(42,104,121)(43,122,97)(44,98,123)(45,124,99)(46,100,125)(47,126,101)(48,102,127)(57,90,137)(58,138,91)(59,92,139)(60,140,93)(61,94,141)(62,142,95)(63,96,143)(64,144,89), (1,20,13)(2,14,21)(3,22,15)(4,16,23)(5,24,9)(6,10,17)(7,18,11)(8,12,19)(25,56,72)(26,65,49)(27,50,66)(28,67,51)(29,52,68)(30,69,53)(31,54,70)(32,71,55)(33,99,139)(34,140,100)(35,101,141)(36,142,102)(37,103,143)(38,144,104)(39,97,137)(40,138,98)(41,63,75)(42,76,64)(43,57,77)(44,78,58)(45,59,79)(46,80,60)(47,61,73)(48,74,62)(81,108,135)(82,136,109)(83,110,129)(84,130,111)(85,112,131)(86,132,105)(87,106,133)(88,134,107)(89,121,116)(90,117,122)(91,123,118)(92,119,124)(93,125,120)(94,113,126)(95,127,114)(96,115,128), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,8)(3,7)(4,6)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(16,17)(25,135)(26,134)(27,133)(28,132)(29,131)(30,130)(31,129)(32,136)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,128)(40,127)(41,77)(42,76)(43,75)(44,74)(45,73)(46,80)(47,79)(48,78)(49,107)(50,106)(51,105)(52,112)(53,111)(54,110)(55,109)(56,108)(57,63)(58,62)(59,61)(65,88)(66,87)(67,86)(68,85)(69,84)(70,83)(71,82)(72,81)(89,144)(90,143)(91,142)(92,141)(93,140)(94,139)(95,138)(96,137)(97,115)(98,114)(99,113)(100,120)(101,119)(102,118)(103,117)(104,116) );

G=PermutationGroup([(1,60),(2,61),(3,62),(4,63),(5,64),(6,57),(7,58),(8,59),(9,76),(10,77),(11,78),(12,79),(13,80),(14,73),(15,74),(16,75),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,41),(24,42),(25,138),(26,139),(27,140),(28,141),(29,142),(30,143),(31,144),(32,137),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72),(49,99),(50,100),(51,101),(52,102),(53,103),(54,104),(55,97),(56,98),(81,127),(82,128),(83,121),(84,122),(85,123),(86,124),(87,125),(88,126),(89,129),(90,130),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(105,119),(106,120),(107,113),(108,114),(109,115),(110,116),(111,117),(112,118)], [(1,27,133),(2,134,28),(3,29,135),(4,136,30),(5,31,129),(6,130,32),(7,25,131),(8,132,26),(9,70,110),(10,111,71),(11,72,112),(12,105,65),(13,66,106),(14,107,67),(15,68,108),(16,109,69),(17,84,55),(18,56,85),(19,86,49),(20,50,87),(21,88,51),(22,52,81),(23,82,53),(24,54,83),(33,79,119),(34,120,80),(35,73,113),(36,114,74),(37,75,115),(38,116,76),(39,77,117),(40,118,78),(41,128,103),(42,104,121),(43,122,97),(44,98,123),(45,124,99),(46,100,125),(47,126,101),(48,102,127),(57,90,137),(58,138,91),(59,92,139),(60,140,93),(61,94,141),(62,142,95),(63,96,143),(64,144,89)], [(1,20,13),(2,14,21),(3,22,15),(4,16,23),(5,24,9),(6,10,17),(7,18,11),(8,12,19),(25,56,72),(26,65,49),(27,50,66),(28,67,51),(29,52,68),(30,69,53),(31,54,70),(32,71,55),(33,99,139),(34,140,100),(35,101,141),(36,142,102),(37,103,143),(38,144,104),(39,97,137),(40,138,98),(41,63,75),(42,76,64),(43,57,77),(44,78,58),(45,59,79),(46,80,60),(47,61,73),(48,74,62),(81,108,135),(82,136,109),(83,110,129),(84,130,111),(85,112,131),(86,132,105),(87,106,133),(88,134,107),(89,121,116),(90,117,122),(91,123,118),(92,119,124),(93,125,120),(94,113,126),(95,127,114),(96,115,128)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(2,8),(3,7),(4,6),(9,24),(10,23),(11,22),(12,21),(13,20),(14,19),(15,18),(16,17),(25,135),(26,134),(27,133),(28,132),(29,131),(30,130),(31,129),(32,136),(33,126),(34,125),(35,124),(36,123),(37,122),(38,121),(39,128),(40,127),(41,77),(42,76),(43,75),(44,74),(45,73),(46,80),(47,79),(48,78),(49,107),(50,106),(51,105),(52,112),(53,111),(54,110),(55,109),(56,108),(57,63),(58,62),(59,61),(65,88),(66,87),(67,86),(68,85),(69,84),(70,83),(71,82),(72,81),(89,144),(90,143),(91,142),(92,141),(93,140),(94,139),(95,138),(96,137),(97,115),(98,114),(99,113),(100,120),(101,119),(102,118),(103,117),(104,116)])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B6A···6L6M···6AB8A8B8C8D12A···12H
order122222223333446···66···6888812···12
size11114436362222222···24···4181818184···4

54 irreducible representations

dim11111222222224
type++++++++++++
imageC1C2C2C2C2S3D4D4D6D6D8C3⋊D4C3⋊D4D4⋊S3
kernelC2×C327D8C2×C324C8C327D8C2×C12⋊S3D4×C3×C6C6×D4C3×C12C62C2×C12C3×D4C3×C6C12C2×C6C6
# reps11411411484888

Matrix representation of C2×C327D8 in GL6(𝔽73)

100000
010000
0072000
0007200
000010
000001
,
72720000
100000
001000
000100
000010
000001
,
010000
72720000
000100
00727200
000010
000001
,
100000
72720000
00134300
00306000
00004116
0000410
,
100000
72720000
0007200
0072000
000010
0000272

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,13,30,0,0,0,0,43,60,0,0,0,0,0,0,41,41,0,0,0,0,16,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,2,0,0,0,0,0,72] >;

C2×C327D8 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes_7D_8
% in TeX

G:=Group("C2xC3^2:7D8");
// GroupNames label

G:=SmallGroup(288,788);
// by ID

G=gap.SmallGroup(288,788);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,254,675,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=b^-1,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽