Copied to
clipboard

?

G = C2×D4.8D10order 320 = 26·5

Direct product of C2 and D4.8D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4.8D10, C20.34C24, D20.30C23, Dic10.29C23, C4○D415D10, C105(C4○D8), D4⋊D523C22, (C2×C20).502D4, C20.263(C2×D4), Q8⋊D521C22, C4.34(C23×D5), (C2×D4).232D10, C4○D2020C22, C52C8.30C23, D4.D520C22, (C2×Q8).190D10, (C5×D4).22C23, C5⋊Q1620C22, D4.22(C22×D5), Q8.22(C22×D5), (C5×Q8).22C23, (C2×C20).556C23, C10.159(C22×D4), (C22×C4).387D10, (C22×C10).123D4, C23.45(C5⋊D4), (D4×C10).272C22, (C2×D20).288C22, (Q8×C10).237C22, (C22×C20).291C22, (C2×Dic10).317C22, C56(C2×C4○D8), (C2×C4○D4)⋊3D5, (C2×D4⋊D5)⋊33C2, (C10×C4○D4)⋊3C2, (C2×Q8⋊D5)⋊33C2, C4.30(C2×C5⋊D4), (C2×C4○D20)⋊30C2, (C2×D4.D5)⋊33C2, (C2×C5⋊Q16)⋊33C2, (C2×C10).76(C2×D4), (C22×C52C8)⋊15C2, (C2×C52C8)⋊42C22, (C5×C4○D4)⋊17C22, C2.32(C22×C5⋊D4), (C2×C4).158(C5⋊D4), (C2×C4).636(C22×D5), C22.119(C2×C5⋊D4), SmallGroup(320,1493)

Series: Derived Chief Lower central Upper central

C1C20 — C2×D4.8D10
C1C5C10C20D20C2×D20C2×C4○D20 — C2×D4.8D10
C5C10C20 — C2×D4.8D10

Subgroups: 830 in 266 conjugacy classes, 111 normal (35 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×2], C4 [×2], C4 [×4], C22, C22 [×2], C22 [×10], C5, C8 [×4], C2×C4 [×2], C2×C4 [×4], C2×C4 [×10], D4 [×2], D4 [×12], Q8 [×2], Q8 [×4], C23, C23 [×2], D5 [×2], C10, C10 [×2], C10 [×4], C2×C8 [×6], D8 [×4], SD16 [×8], Q16 [×4], C22×C4, C22×C4 [×2], C2×D4, C2×D4 [×3], C2×Q8, C2×Q8, C4○D4 [×4], C4○D4 [×8], Dic5 [×2], C20 [×2], C20 [×2], C20 [×2], D10 [×4], C2×C10, C2×C10 [×2], C2×C10 [×6], C22×C8, C2×D8, C2×SD16 [×2], C2×Q16, C4○D8 [×8], C2×C4○D4, C2×C4○D4, C52C8 [×4], Dic10 [×2], Dic10, C4×D5 [×4], D20 [×2], D20, C2×Dic5, C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×4], C2×C20 [×5], C5×D4 [×2], C5×D4 [×5], C5×Q8 [×2], C5×Q8, C22×D5, C22×C10, C22×C10, C2×C4○D8, C2×C52C8 [×2], C2×C52C8 [×4], D4⋊D5 [×4], D4.D5 [×4], Q8⋊D5 [×4], C5⋊Q16 [×4], C2×Dic10, C2×C4×D5, C2×D20, C4○D20 [×4], C4○D20 [×2], C2×C5⋊D4, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, C5×C4○D4 [×4], C5×C4○D4 [×2], C22×C52C8, C2×D4⋊D5, C2×D4.D5, C2×Q8⋊D5, C2×C5⋊Q16, D4.8D10 [×8], C2×C4○D20, C10×C4○D4, C2×D4.8D10

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C4○D8 [×2], C22×D4, C5⋊D4 [×4], C22×D5 [×7], C2×C4○D8, C2×C5⋊D4 [×6], C23×D5, D4.8D10 [×2], C22×C5⋊D4, C2×D4.8D10

Generators and relations
 G = < a,b,c,d,e | a2=b4=c2=1, d10=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 110)(2 111)(3 112)(4 113)(5 114)(6 115)(7 116)(8 117)(9 118)(10 119)(11 120)(12 101)(13 102)(14 103)(15 104)(16 105)(17 106)(18 107)(19 108)(20 109)(21 144)(22 145)(23 146)(24 147)(25 148)(26 149)(27 150)(28 151)(29 152)(30 153)(31 154)(32 155)(33 156)(34 157)(35 158)(36 159)(37 160)(38 141)(39 142)(40 143)(41 80)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(57 76)(58 77)(59 78)(60 79)(81 124)(82 125)(83 126)(84 127)(85 128)(86 129)(87 130)(88 131)(89 132)(90 133)(91 134)(92 135)(93 136)(94 137)(95 138)(96 139)(97 140)(98 121)(99 122)(100 123)
(1 156 11 146)(2 157 12 147)(3 158 13 148)(4 159 14 149)(5 160 15 150)(6 141 16 151)(7 142 17 152)(8 143 18 153)(9 144 19 154)(10 145 20 155)(21 108 31 118)(22 109 32 119)(23 110 33 120)(24 111 34 101)(25 112 35 102)(26 113 36 103)(27 114 37 104)(28 115 38 105)(29 116 39 106)(30 117 40 107)(41 129 51 139)(42 130 52 140)(43 131 53 121)(44 132 54 122)(45 133 55 123)(46 134 56 124)(47 135 57 125)(48 136 58 126)(49 137 59 127)(50 138 60 128)(61 87 71 97)(62 88 72 98)(63 89 73 99)(64 90 74 100)(65 91 75 81)(66 92 76 82)(67 93 77 83)(68 94 78 84)(69 95 79 85)(70 96 80 86)
(1 47)(2 48)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 57)(12 58)(13 59)(14 60)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 90)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 100)(32 81)(33 82)(34 83)(35 84)(36 85)(37 86)(38 87)(39 88)(40 89)(61 105)(62 106)(63 107)(64 108)(65 109)(66 110)(67 111)(68 112)(69 113)(70 114)(71 115)(72 116)(73 117)(74 118)(75 119)(76 120)(77 101)(78 102)(79 103)(80 104)(121 152)(122 153)(123 154)(124 155)(125 156)(126 157)(127 158)(128 159)(129 160)(130 141)(131 142)(132 143)(133 144)(134 145)(135 146)(136 147)(137 148)(138 149)(139 150)(140 151)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 24 31 34)(22 33 32 23)(25 40 35 30)(26 29 36 39)(27 38 37 28)(41 140 51 130)(42 129 52 139)(43 138 53 128)(44 127 54 137)(45 136 55 126)(46 125 56 135)(47 134 57 124)(48 123 58 133)(49 132 59 122)(50 121 60 131)(61 86 71 96)(62 95 72 85)(63 84 73 94)(64 93 74 83)(65 82 75 92)(66 91 76 81)(67 100 77 90)(68 89 78 99)(69 98 79 88)(70 87 80 97)(101 118 111 108)(102 107 112 117)(103 116 113 106)(104 105 114 115)(109 110 119 120)(141 160 151 150)(142 149 152 159)(143 158 153 148)(144 147 154 157)(145 156 155 146)

G:=sub<Sym(160)| (1,110)(2,111)(3,112)(4,113)(5,114)(6,115)(7,116)(8,117)(9,118)(10,119)(11,120)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,109)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,80)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135)(93,136)(94,137)(95,138)(96,139)(97,140)(98,121)(99,122)(100,123), (1,156,11,146)(2,157,12,147)(3,158,13,148)(4,159,14,149)(5,160,15,150)(6,141,16,151)(7,142,17,152)(8,143,18,153)(9,144,19,154)(10,145,20,155)(21,108,31,118)(22,109,32,119)(23,110,33,120)(24,111,34,101)(25,112,35,102)(26,113,36,103)(27,114,37,104)(28,115,38,105)(29,116,39,106)(30,117,40,107)(41,129,51,139)(42,130,52,140)(43,131,53,121)(44,132,54,122)(45,133,55,123)(46,134,56,124)(47,135,57,125)(48,136,58,126)(49,137,59,127)(50,138,60,128)(61,87,71,97)(62,88,72,98)(63,89,73,99)(64,90,74,100)(65,91,75,81)(66,92,76,82)(67,93,77,83)(68,94,78,84)(69,95,79,85)(70,96,80,86), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,81)(33,82)(34,83)(35,84)(36,85)(37,86)(38,87)(39,88)(40,89)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,101)(78,102)(79,103)(80,104)(121,152)(122,153)(123,154)(124,155)(125,156)(126,157)(127,158)(128,159)(129,160)(130,141)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,24,31,34)(22,33,32,23)(25,40,35,30)(26,29,36,39)(27,38,37,28)(41,140,51,130)(42,129,52,139)(43,138,53,128)(44,127,54,137)(45,136,55,126)(46,125,56,135)(47,134,57,124)(48,123,58,133)(49,132,59,122)(50,121,60,131)(61,86,71,96)(62,95,72,85)(63,84,73,94)(64,93,74,83)(65,82,75,92)(66,91,76,81)(67,100,77,90)(68,89,78,99)(69,98,79,88)(70,87,80,97)(101,118,111,108)(102,107,112,117)(103,116,113,106)(104,105,114,115)(109,110,119,120)(141,160,151,150)(142,149,152,159)(143,158,153,148)(144,147,154,157)(145,156,155,146)>;

G:=Group( (1,110)(2,111)(3,112)(4,113)(5,114)(6,115)(7,116)(8,117)(9,118)(10,119)(11,120)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,109)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,80)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)(89,132)(90,133)(91,134)(92,135)(93,136)(94,137)(95,138)(96,139)(97,140)(98,121)(99,122)(100,123), (1,156,11,146)(2,157,12,147)(3,158,13,148)(4,159,14,149)(5,160,15,150)(6,141,16,151)(7,142,17,152)(8,143,18,153)(9,144,19,154)(10,145,20,155)(21,108,31,118)(22,109,32,119)(23,110,33,120)(24,111,34,101)(25,112,35,102)(26,113,36,103)(27,114,37,104)(28,115,38,105)(29,116,39,106)(30,117,40,107)(41,129,51,139)(42,130,52,140)(43,131,53,121)(44,132,54,122)(45,133,55,123)(46,134,56,124)(47,135,57,125)(48,136,58,126)(49,137,59,127)(50,138,60,128)(61,87,71,97)(62,88,72,98)(63,89,73,99)(64,90,74,100)(65,91,75,81)(66,92,76,82)(67,93,77,83)(68,94,78,84)(69,95,79,85)(70,96,80,86), (1,47)(2,48)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,81)(33,82)(34,83)(35,84)(36,85)(37,86)(38,87)(39,88)(40,89)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,101)(78,102)(79,103)(80,104)(121,152)(122,153)(123,154)(124,155)(125,156)(126,157)(127,158)(128,159)(129,160)(130,141)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,151), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,24,31,34)(22,33,32,23)(25,40,35,30)(26,29,36,39)(27,38,37,28)(41,140,51,130)(42,129,52,139)(43,138,53,128)(44,127,54,137)(45,136,55,126)(46,125,56,135)(47,134,57,124)(48,123,58,133)(49,132,59,122)(50,121,60,131)(61,86,71,96)(62,95,72,85)(63,84,73,94)(64,93,74,83)(65,82,75,92)(66,91,76,81)(67,100,77,90)(68,89,78,99)(69,98,79,88)(70,87,80,97)(101,118,111,108)(102,107,112,117)(103,116,113,106)(104,105,114,115)(109,110,119,120)(141,160,151,150)(142,149,152,159)(143,158,153,148)(144,147,154,157)(145,156,155,146) );

G=PermutationGroup([(1,110),(2,111),(3,112),(4,113),(5,114),(6,115),(7,116),(8,117),(9,118),(10,119),(11,120),(12,101),(13,102),(14,103),(15,104),(16,105),(17,106),(18,107),(19,108),(20,109),(21,144),(22,145),(23,146),(24,147),(25,148),(26,149),(27,150),(28,151),(29,152),(30,153),(31,154),(32,155),(33,156),(34,157),(35,158),(36,159),(37,160),(38,141),(39,142),(40,143),(41,80),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(57,76),(58,77),(59,78),(60,79),(81,124),(82,125),(83,126),(84,127),(85,128),(86,129),(87,130),(88,131),(89,132),(90,133),(91,134),(92,135),(93,136),(94,137),(95,138),(96,139),(97,140),(98,121),(99,122),(100,123)], [(1,156,11,146),(2,157,12,147),(3,158,13,148),(4,159,14,149),(5,160,15,150),(6,141,16,151),(7,142,17,152),(8,143,18,153),(9,144,19,154),(10,145,20,155),(21,108,31,118),(22,109,32,119),(23,110,33,120),(24,111,34,101),(25,112,35,102),(26,113,36,103),(27,114,37,104),(28,115,38,105),(29,116,39,106),(30,117,40,107),(41,129,51,139),(42,130,52,140),(43,131,53,121),(44,132,54,122),(45,133,55,123),(46,134,56,124),(47,135,57,125),(48,136,58,126),(49,137,59,127),(50,138,60,128),(61,87,71,97),(62,88,72,98),(63,89,73,99),(64,90,74,100),(65,91,75,81),(66,92,76,82),(67,93,77,83),(68,94,78,84),(69,95,79,85),(70,96,80,86)], [(1,47),(2,48),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,57),(12,58),(13,59),(14,60),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,90),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,100),(32,81),(33,82),(34,83),(35,84),(36,85),(37,86),(38,87),(39,88),(40,89),(61,105),(62,106),(63,107),(64,108),(65,109),(66,110),(67,111),(68,112),(69,113),(70,114),(71,115),(72,116),(73,117),(74,118),(75,119),(76,120),(77,101),(78,102),(79,103),(80,104),(121,152),(122,153),(123,154),(124,155),(125,156),(126,157),(127,158),(128,159),(129,160),(130,141),(131,142),(132,143),(133,144),(134,145),(135,146),(136,147),(137,148),(138,149),(139,150),(140,151)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,24,31,34),(22,33,32,23),(25,40,35,30),(26,29,36,39),(27,38,37,28),(41,140,51,130),(42,129,52,139),(43,138,53,128),(44,127,54,137),(45,136,55,126),(46,125,56,135),(47,134,57,124),(48,123,58,133),(49,132,59,122),(50,121,60,131),(61,86,71,96),(62,95,72,85),(63,84,73,94),(64,93,74,83),(65,82,75,92),(66,91,76,81),(67,100,77,90),(68,89,78,99),(69,98,79,88),(70,87,80,97),(101,118,111,108),(102,107,112,117),(103,116,113,106),(104,105,114,115),(109,110,119,120),(141,160,151,150),(142,149,152,159),(143,158,153,148),(144,147,154,157),(145,156,155,146)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
0040000
0004000
000010
000001
,
100000
010000
0040000
0004000
00004039
000011
,
100000
010000
0040400
000100
00001717
00001224
,
1350000
660000
001000
000100
000090
000009
,
1350000
0400000
001000
00214000
000090
00003232

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,4,1,0,0,0,0,0,0,17,12,0,0,0,0,17,24],[1,6,0,0,0,0,35,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,35,40,0,0,0,0,0,0,1,21,0,0,0,0,0,40,0,0,0,0,0,0,9,32,0,0,0,0,0,32] >;

68 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J5A5B8A···8H10A···10F10G···10R20A···20H20I···20T
order12222222224444444444558···810···1010···1020···2020···20
size1111224420201111224420202210···102···24···42···24···4

68 irreducible representations

dim11111111122222222224
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D5D10D10D10D10C4○D8C5⋊D4C5⋊D4D4.8D10
kernelC2×D4.8D10C22×C52C8C2×D4⋊D5C2×D4.D5C2×Q8⋊D5C2×C5⋊Q16D4.8D10C2×C4○D20C10×C4○D4C2×C20C22×C10C2×C4○D4C22×C4C2×D4C2×Q8C4○D4C10C2×C4C23C2
# reps111111811312222881248

In GAP, Magma, Sage, TeX

C_2\times D_4._8D_{10}
% in TeX

G:=Group("C2xD4.8D10");
// GroupNames label

G:=SmallGroup(320,1493);
// by ID

G=gap.SmallGroup(320,1493);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,1684,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^10=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^9>;
// generators/relations

׿
×
𝔽