Copied to
clipboard

?

G = C2×D6011C2order 480 = 25·3·5

Direct product of C2 and D6011C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D6011C2, D6042C22, C30.57C24, C23.32D30, C60.251C23, D30.24C23, Dic3038C22, Dic15.27C23, (C2×C4)⋊10D30, (C2×C20)⋊34D6, (C2×D60)⋊30C2, C65(C4○D20), (C2×C12)⋊34D10, (C22×C4)⋊8D15, (C22×C12)⋊8D5, C3011(C4○D4), C105(C4○D12), (C22×C20)⋊12S3, (C22×C60)⋊12C2, (C2×C60)⋊45C22, C2.5(C23×D15), C6.57(C23×D5), (C2×Dic30)⋊31C2, (C4×D15)⋊20C22, C157D422C22, C10.57(S3×C23), C4.42(C22×D15), (C2×C30).321C23, C20.230(C22×S3), (C22×C6).127D10, C12.232(C22×D5), (C22×C10).145D6, C22.5(C22×D15), (C22×C30).150C22, (C22×D15).90C22, (C2×Dic15).177C22, C36(C2×C4○D20), C56(C2×C4○D12), (C2×C4×D15)⋊21C2, C1520(C2×C4○D4), (C2×C157D4)⋊27C2, (C2×C6).317(C22×D5), (C2×C10).316(C22×S3), SmallGroup(480,1168)

Series: Derived Chief Lower central Upper central

C1C30 — C2×D6011C2
C1C5C15C30D30C22×D15C2×C4×D15 — C2×D6011C2
C15C30 — C2×D6011C2

Subgroups: 1716 in 328 conjugacy classes, 127 normal (31 characteristic)
C1, C2, C2 [×2], C2 [×6], C3, C4 [×4], C4 [×4], C22, C22 [×2], C22 [×10], C5, S3 [×4], C6, C6 [×2], C6 [×2], C2×C4 [×2], C2×C4 [×4], C2×C4 [×10], D4 [×12], Q8 [×4], C23, C23 [×2], D5 [×4], C10, C10 [×2], C10 [×2], Dic3 [×4], C12 [×4], D6 [×8], C2×C6, C2×C6 [×2], C2×C6 [×2], C15, C22×C4, C22×C4 [×2], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5 [×4], C20 [×4], D10 [×8], C2×C10, C2×C10 [×2], C2×C10 [×2], Dic6 [×4], C4×S3 [×8], D12 [×4], C2×Dic3 [×2], C3⋊D4 [×8], C2×C12 [×2], C2×C12 [×4], C22×S3 [×2], C22×C6, D15 [×4], C30, C30 [×2], C30 [×2], C2×C4○D4, Dic10 [×4], C4×D5 [×8], D20 [×4], C2×Dic5 [×2], C5⋊D4 [×8], C2×C20 [×2], C2×C20 [×4], C22×D5 [×2], C22×C10, C2×Dic6, S3×C2×C4 [×2], C2×D12, C4○D12 [×8], C2×C3⋊D4 [×2], C22×C12, Dic15 [×4], C60 [×4], D30 [×4], D30 [×4], C2×C30, C2×C30 [×2], C2×C30 [×2], C2×Dic10, C2×C4×D5 [×2], C2×D20, C4○D20 [×8], C2×C5⋊D4 [×2], C22×C20, C2×C4○D12, Dic30 [×4], C4×D15 [×8], D60 [×4], C2×Dic15 [×2], C157D4 [×8], C2×C60 [×2], C2×C60 [×4], C22×D15 [×2], C22×C30, C2×C4○D20, C2×Dic30, C2×C4×D15 [×2], C2×D60, D6011C2 [×8], C2×C157D4 [×2], C22×C60, C2×D6011C2

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C4○D4 [×2], C24, D10 [×7], C22×S3 [×7], D15, C2×C4○D4, C22×D5 [×7], C4○D12 [×2], S3×C23, D30 [×7], C4○D20 [×2], C23×D5, C2×C4○D12, C22×D15 [×7], C2×C4○D20, D6011C2 [×2], C23×D15, C2×D6011C2

Generators and relations
 G = < a,b,c,d | a2=b60=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd=b30c >

Smallest permutation representation
On 240 points
Generators in S240
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 71)(10 72)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 79)(18 80)(19 81)(20 82)(21 83)(22 84)(23 85)(24 86)(25 87)(26 88)(27 89)(28 90)(29 91)(30 92)(31 93)(32 94)(33 95)(34 96)(35 97)(36 98)(37 99)(38 100)(39 101)(40 102)(41 103)(42 104)(43 105)(44 106)(45 107)(46 108)(47 109)(48 110)(49 111)(50 112)(51 113)(52 114)(53 115)(54 116)(55 117)(56 118)(57 119)(58 120)(59 61)(60 62)(121 189)(122 190)(123 191)(124 192)(125 193)(126 194)(127 195)(128 196)(129 197)(130 198)(131 199)(132 200)(133 201)(134 202)(135 203)(136 204)(137 205)(138 206)(139 207)(140 208)(141 209)(142 210)(143 211)(144 212)(145 213)(146 214)(147 215)(148 216)(149 217)(150 218)(151 219)(152 220)(153 221)(154 222)(155 223)(156 224)(157 225)(158 226)(159 227)(160 228)(161 229)(162 230)(163 231)(164 232)(165 233)(166 234)(167 235)(168 236)(169 237)(170 238)(171 239)(172 240)(173 181)(174 182)(175 183)(176 184)(177 185)(178 186)(179 187)(180 188)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 60)(2 59)(3 58)(4 57)(5 56)(6 55)(7 54)(8 53)(9 52)(10 51)(11 50)(12 49)(13 48)(14 47)(15 46)(16 45)(17 44)(18 43)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(61 64)(62 63)(65 120)(66 119)(67 118)(68 117)(69 116)(70 115)(71 114)(72 113)(73 112)(74 111)(75 110)(76 109)(77 108)(78 107)(79 106)(80 105)(81 104)(82 103)(83 102)(84 101)(85 100)(86 99)(87 98)(88 97)(89 96)(90 95)(91 94)(92 93)(121 168)(122 167)(123 166)(124 165)(125 164)(126 163)(127 162)(128 161)(129 160)(130 159)(131 158)(132 157)(133 156)(134 155)(135 154)(136 153)(137 152)(138 151)(139 150)(140 149)(141 148)(142 147)(143 146)(144 145)(169 180)(170 179)(171 178)(172 177)(173 176)(174 175)(181 184)(182 183)(185 240)(186 239)(187 238)(188 237)(189 236)(190 235)(191 234)(192 233)(193 232)(194 231)(195 230)(196 229)(197 228)(198 227)(199 226)(200 225)(201 224)(202 223)(203 222)(204 221)(205 220)(206 219)(207 218)(208 217)(209 216)(210 215)(211 214)(212 213)
(1 198)(2 199)(3 200)(4 201)(5 202)(6 203)(7 204)(8 205)(9 206)(10 207)(11 208)(12 209)(13 210)(14 211)(15 212)(16 213)(17 214)(18 215)(19 216)(20 217)(21 218)(22 219)(23 220)(24 221)(25 222)(26 223)(27 224)(28 225)(29 226)(30 227)(31 228)(32 229)(33 230)(34 231)(35 232)(36 233)(37 234)(38 235)(39 236)(40 237)(41 238)(42 239)(43 240)(44 181)(45 182)(46 183)(47 184)(48 185)(49 186)(50 187)(51 188)(52 189)(53 190)(54 191)(55 192)(56 193)(57 194)(58 195)(59 196)(60 197)(61 128)(62 129)(63 130)(64 131)(65 132)(66 133)(67 134)(68 135)(69 136)(70 137)(71 138)(72 139)(73 140)(74 141)(75 142)(76 143)(77 144)(78 145)(79 146)(80 147)(81 148)(82 149)(83 150)(84 151)(85 152)(86 153)(87 154)(88 155)(89 156)(90 157)(91 158)(92 159)(93 160)(94 161)(95 162)(96 163)(97 164)(98 165)(99 166)(100 167)(101 168)(102 169)(103 170)(104 171)(105 172)(106 173)(107 174)(108 175)(109 176)(110 177)(111 178)(112 179)(113 180)(114 121)(115 122)(116 123)(117 124)(118 125)(119 126)(120 127)

G:=sub<Sym(240)| (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(33,95)(34,96)(35,97)(36,98)(37,99)(38,100)(39,101)(40,102)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,61)(60,62)(121,189)(122,190)(123,191)(124,192)(125,193)(126,194)(127,195)(128,196)(129,197)(130,198)(131,199)(132,200)(133,201)(134,202)(135,203)(136,204)(137,205)(138,206)(139,207)(140,208)(141,209)(142,210)(143,211)(144,212)(145,213)(146,214)(147,215)(148,216)(149,217)(150,218)(151,219)(152,220)(153,221)(154,222)(155,223)(156,224)(157,225)(158,226)(159,227)(160,228)(161,229)(162,230)(163,231)(164,232)(165,233)(166,234)(167,235)(168,236)(169,237)(170,238)(171,239)(172,240)(173,181)(174,182)(175,183)(176,184)(177,185)(178,186)(179,187)(180,188), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(61,64)(62,63)(65,120)(66,119)(67,118)(68,117)(69,116)(70,115)(71,114)(72,113)(73,112)(74,111)(75,110)(76,109)(77,108)(78,107)(79,106)(80,105)(81,104)(82,103)(83,102)(84,101)(85,100)(86,99)(87,98)(88,97)(89,96)(90,95)(91,94)(92,93)(121,168)(122,167)(123,166)(124,165)(125,164)(126,163)(127,162)(128,161)(129,160)(130,159)(131,158)(132,157)(133,156)(134,155)(135,154)(136,153)(137,152)(138,151)(139,150)(140,149)(141,148)(142,147)(143,146)(144,145)(169,180)(170,179)(171,178)(172,177)(173,176)(174,175)(181,184)(182,183)(185,240)(186,239)(187,238)(188,237)(189,236)(190,235)(191,234)(192,233)(193,232)(194,231)(195,230)(196,229)(197,228)(198,227)(199,226)(200,225)(201,224)(202,223)(203,222)(204,221)(205,220)(206,219)(207,218)(208,217)(209,216)(210,215)(211,214)(212,213), (1,198)(2,199)(3,200)(4,201)(5,202)(6,203)(7,204)(8,205)(9,206)(10,207)(11,208)(12,209)(13,210)(14,211)(15,212)(16,213)(17,214)(18,215)(19,216)(20,217)(21,218)(22,219)(23,220)(24,221)(25,222)(26,223)(27,224)(28,225)(29,226)(30,227)(31,228)(32,229)(33,230)(34,231)(35,232)(36,233)(37,234)(38,235)(39,236)(40,237)(41,238)(42,239)(43,240)(44,181)(45,182)(46,183)(47,184)(48,185)(49,186)(50,187)(51,188)(52,189)(53,190)(54,191)(55,192)(56,193)(57,194)(58,195)(59,196)(60,197)(61,128)(62,129)(63,130)(64,131)(65,132)(66,133)(67,134)(68,135)(69,136)(70,137)(71,138)(72,139)(73,140)(74,141)(75,142)(76,143)(77,144)(78,145)(79,146)(80,147)(81,148)(82,149)(83,150)(84,151)(85,152)(86,153)(87,154)(88,155)(89,156)(90,157)(91,158)(92,159)(93,160)(94,161)(95,162)(96,163)(97,164)(98,165)(99,166)(100,167)(101,168)(102,169)(103,170)(104,171)(105,172)(106,173)(107,174)(108,175)(109,176)(110,177)(111,178)(112,179)(113,180)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127)>;

G:=Group( (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(33,95)(34,96)(35,97)(36,98)(37,99)(38,100)(39,101)(40,102)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,61)(60,62)(121,189)(122,190)(123,191)(124,192)(125,193)(126,194)(127,195)(128,196)(129,197)(130,198)(131,199)(132,200)(133,201)(134,202)(135,203)(136,204)(137,205)(138,206)(139,207)(140,208)(141,209)(142,210)(143,211)(144,212)(145,213)(146,214)(147,215)(148,216)(149,217)(150,218)(151,219)(152,220)(153,221)(154,222)(155,223)(156,224)(157,225)(158,226)(159,227)(160,228)(161,229)(162,230)(163,231)(164,232)(165,233)(166,234)(167,235)(168,236)(169,237)(170,238)(171,239)(172,240)(173,181)(174,182)(175,183)(176,184)(177,185)(178,186)(179,187)(180,188), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(61,64)(62,63)(65,120)(66,119)(67,118)(68,117)(69,116)(70,115)(71,114)(72,113)(73,112)(74,111)(75,110)(76,109)(77,108)(78,107)(79,106)(80,105)(81,104)(82,103)(83,102)(84,101)(85,100)(86,99)(87,98)(88,97)(89,96)(90,95)(91,94)(92,93)(121,168)(122,167)(123,166)(124,165)(125,164)(126,163)(127,162)(128,161)(129,160)(130,159)(131,158)(132,157)(133,156)(134,155)(135,154)(136,153)(137,152)(138,151)(139,150)(140,149)(141,148)(142,147)(143,146)(144,145)(169,180)(170,179)(171,178)(172,177)(173,176)(174,175)(181,184)(182,183)(185,240)(186,239)(187,238)(188,237)(189,236)(190,235)(191,234)(192,233)(193,232)(194,231)(195,230)(196,229)(197,228)(198,227)(199,226)(200,225)(201,224)(202,223)(203,222)(204,221)(205,220)(206,219)(207,218)(208,217)(209,216)(210,215)(211,214)(212,213), (1,198)(2,199)(3,200)(4,201)(5,202)(6,203)(7,204)(8,205)(9,206)(10,207)(11,208)(12,209)(13,210)(14,211)(15,212)(16,213)(17,214)(18,215)(19,216)(20,217)(21,218)(22,219)(23,220)(24,221)(25,222)(26,223)(27,224)(28,225)(29,226)(30,227)(31,228)(32,229)(33,230)(34,231)(35,232)(36,233)(37,234)(38,235)(39,236)(40,237)(41,238)(42,239)(43,240)(44,181)(45,182)(46,183)(47,184)(48,185)(49,186)(50,187)(51,188)(52,189)(53,190)(54,191)(55,192)(56,193)(57,194)(58,195)(59,196)(60,197)(61,128)(62,129)(63,130)(64,131)(65,132)(66,133)(67,134)(68,135)(69,136)(70,137)(71,138)(72,139)(73,140)(74,141)(75,142)(76,143)(77,144)(78,145)(79,146)(80,147)(81,148)(82,149)(83,150)(84,151)(85,152)(86,153)(87,154)(88,155)(89,156)(90,157)(91,158)(92,159)(93,160)(94,161)(95,162)(96,163)(97,164)(98,165)(99,166)(100,167)(101,168)(102,169)(103,170)(104,171)(105,172)(106,173)(107,174)(108,175)(109,176)(110,177)(111,178)(112,179)(113,180)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127) );

G=PermutationGroup([(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,71),(10,72),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,79),(18,80),(19,81),(20,82),(21,83),(22,84),(23,85),(24,86),(25,87),(26,88),(27,89),(28,90),(29,91),(30,92),(31,93),(32,94),(33,95),(34,96),(35,97),(36,98),(37,99),(38,100),(39,101),(40,102),(41,103),(42,104),(43,105),(44,106),(45,107),(46,108),(47,109),(48,110),(49,111),(50,112),(51,113),(52,114),(53,115),(54,116),(55,117),(56,118),(57,119),(58,120),(59,61),(60,62),(121,189),(122,190),(123,191),(124,192),(125,193),(126,194),(127,195),(128,196),(129,197),(130,198),(131,199),(132,200),(133,201),(134,202),(135,203),(136,204),(137,205),(138,206),(139,207),(140,208),(141,209),(142,210),(143,211),(144,212),(145,213),(146,214),(147,215),(148,216),(149,217),(150,218),(151,219),(152,220),(153,221),(154,222),(155,223),(156,224),(157,225),(158,226),(159,227),(160,228),(161,229),(162,230),(163,231),(164,232),(165,233),(166,234),(167,235),(168,236),(169,237),(170,238),(171,239),(172,240),(173,181),(174,182),(175,183),(176,184),(177,185),(178,186),(179,187),(180,188)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,60),(2,59),(3,58),(4,57),(5,56),(6,55),(7,54),(8,53),(9,52),(10,51),(11,50),(12,49),(13,48),(14,47),(15,46),(16,45),(17,44),(18,43),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(61,64),(62,63),(65,120),(66,119),(67,118),(68,117),(69,116),(70,115),(71,114),(72,113),(73,112),(74,111),(75,110),(76,109),(77,108),(78,107),(79,106),(80,105),(81,104),(82,103),(83,102),(84,101),(85,100),(86,99),(87,98),(88,97),(89,96),(90,95),(91,94),(92,93),(121,168),(122,167),(123,166),(124,165),(125,164),(126,163),(127,162),(128,161),(129,160),(130,159),(131,158),(132,157),(133,156),(134,155),(135,154),(136,153),(137,152),(138,151),(139,150),(140,149),(141,148),(142,147),(143,146),(144,145),(169,180),(170,179),(171,178),(172,177),(173,176),(174,175),(181,184),(182,183),(185,240),(186,239),(187,238),(188,237),(189,236),(190,235),(191,234),(192,233),(193,232),(194,231),(195,230),(196,229),(197,228),(198,227),(199,226),(200,225),(201,224),(202,223),(203,222),(204,221),(205,220),(206,219),(207,218),(208,217),(209,216),(210,215),(211,214),(212,213)], [(1,198),(2,199),(3,200),(4,201),(5,202),(6,203),(7,204),(8,205),(9,206),(10,207),(11,208),(12,209),(13,210),(14,211),(15,212),(16,213),(17,214),(18,215),(19,216),(20,217),(21,218),(22,219),(23,220),(24,221),(25,222),(26,223),(27,224),(28,225),(29,226),(30,227),(31,228),(32,229),(33,230),(34,231),(35,232),(36,233),(37,234),(38,235),(39,236),(40,237),(41,238),(42,239),(43,240),(44,181),(45,182),(46,183),(47,184),(48,185),(49,186),(50,187),(51,188),(52,189),(53,190),(54,191),(55,192),(56,193),(57,194),(58,195),(59,196),(60,197),(61,128),(62,129),(63,130),(64,131),(65,132),(66,133),(67,134),(68,135),(69,136),(70,137),(71,138),(72,139),(73,140),(74,141),(75,142),(76,143),(77,144),(78,145),(79,146),(80,147),(81,148),(82,149),(83,150),(84,151),(85,152),(86,153),(87,154),(88,155),(89,156),(90,157),(91,158),(92,159),(93,160),(94,161),(95,162),(96,163),(97,164),(98,165),(99,166),(100,167),(101,168),(102,169),(103,170),(104,171),(105,172),(106,173),(107,174),(108,175),(109,176),(110,177),(111,178),(112,179),(113,180),(114,121),(115,122),(116,123),(117,124),(118,125),(119,126),(120,127)])

Matrix representation G ⊆ GL4(𝔽61) generated by

60000
06000
0010
0001
,
374700
143100
005328
00370
,
252800
303600
00833
004853
,
60000
06000
00346
002127
G:=sub<GL(4,GF(61))| [60,0,0,0,0,60,0,0,0,0,1,0,0,0,0,1],[37,14,0,0,47,31,0,0,0,0,53,37,0,0,28,0],[25,30,0,0,28,36,0,0,0,0,8,48,0,0,33,53],[60,0,0,0,0,60,0,0,0,0,34,21,0,0,6,27] >;

132 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J5A5B6A···6G10A···10N12A···12H15A15B15C15D20A···20P30A···30AB60A···60AF
order122222222234444444444556···610···1012···121515151520···2030···3060···60
size11112230303030211112230303030222···22···22···222222···22···22···2

132 irreducible representations

dim11111112222222222222
type++++++++++++++++
imageC1C2C2C2C2C2C2S3D5D6D6C4○D4D10D10D15C4○D12D30D30C4○D20D6011C2
kernelC2×D6011C2C2×Dic30C2×C4×D15C2×D60D6011C2C2×C157D4C22×C60C22×C20C22×C12C2×C20C22×C10C30C2×C12C22×C6C22×C4C10C2×C4C23C6C2
# reps112182112614122482441632

In GAP, Magma, Sage, TeX

C_2\times D_{60}\rtimes_{11}C_2
% in TeX

G:=Group("C2xD60:11C2");
// GroupNames label

G:=SmallGroup(480,1168);
// by ID

G=gap.SmallGroup(480,1168);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,100,675,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^60=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d=b^30*c>;
// generators/relations

׿
×
𝔽