Copied to
clipboard

G = (C2×C8).51D4order 128 = 27

19th non-split extension by C2×C8 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×C8).51D4, (C2×C4).23D8, C4⋊C4.108D4, (C2×D4).13Q8, C22.87(C2×D8), C2.15(C4⋊D8), C2.15(C87D4), C2.20(C8⋊D4), C2.8(D4⋊Q8), C23.924(C2×D4), (C22×C4).156D4, C2.11(D4.Q8), C4.37(C22⋊Q8), C4.155(C4⋊D4), C22.4Q1626C2, (C22×C8).82C22, C4.35(C422C2), C22.118(C4○D8), (C2×C42).378C22, C2.21(Q8.D4), (C22×D4).90C22, C2.8(C23.Q8), C22.245(C4⋊D4), C22.146(C8⋊C22), (C22×C4).1458C23, C23.65C238C2, C22.111(C22⋊Q8), C22.135(C8.C22), C24.3C22.18C2, (C2×C4⋊C8)⋊21C2, (C2×C2.D8)⋊9C2, (C2×C4).285(C2×Q8), (C2×C4).1057(C2×D4), (C2×D4⋊C4).16C2, (C2×C4).622(C4○D4), (C2×C4⋊C4).143C22, SmallGroup(128,799)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — (C2×C8).51D4
C1C2C4C2×C4C22×C4C22×D4C2×D4⋊C4 — (C2×C8).51D4
C1C2C22×C4 — (C2×C8).51D4
C1C23C2×C42 — (C2×C8).51D4
C1C2C2C22×C4 — (C2×C8).51D4

Generators and relations for (C2×C8).51D4
 G = < a,b,c,d | a2=b8=c4=1, d2=b6, dbd-1=ab=ba, ac=ca, ad=da, cbc-1=b-1, dcd-1=b6c-1 >

Subgroups: 344 in 142 conjugacy classes, 52 normal (44 characteristic)
C1, C2 [×7], C2 [×2], C4 [×4], C4 [×7], C22 [×7], C22 [×10], C8 [×3], C2×C4 [×6], C2×C4 [×2], C2×C4 [×15], D4 [×6], C23, C23 [×8], C42 [×2], C22⋊C4 [×4], C4⋊C4 [×2], C4⋊C4 [×7], C2×C8 [×2], C2×C8 [×5], C22×C4 [×3], C22×C4 [×3], C2×D4 [×2], C2×D4 [×5], C24, C2.C42, D4⋊C4 [×4], C4⋊C8 [×2], C2.D8 [×2], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4 [×3], C2×C4⋊C4, C22×C8 [×2], C22×D4, C22.4Q16, C23.65C23, C24.3C22, C2×D4⋊C4 [×2], C2×C4⋊C8, C2×C2.D8, (C2×C8).51D4
Quotients: C1, C2 [×7], C22 [×7], D4 [×6], Q8 [×2], C23, D8 [×2], C2×D4 [×3], C2×Q8, C4○D4 [×3], C4⋊D4 [×3], C22⋊Q8 [×3], C422C2, C2×D8, C4○D8, C8⋊C22, C8.C22, C23.Q8, C4⋊D8, Q8.D4, C87D4, C8⋊D4, D4⋊Q8, D4.Q8, (C2×C8).51D4

Smallest permutation representation of (C2×C8).51D4
On 64 points
Generators in S64
(1 44)(2 45)(3 46)(4 47)(5 48)(6 41)(7 42)(8 43)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 57)(33 55)(34 56)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 10 53 17)(2 9 54 24)(3 16 55 23)(4 15 56 22)(5 14 49 21)(6 13 50 20)(7 12 51 19)(8 11 52 18)(25 40 57 45)(26 39 58 44)(27 38 59 43)(28 37 60 42)(29 36 61 41)(30 35 62 48)(31 34 63 47)(32 33 64 46)
(1 23 7 21 5 19 3 17)(2 57 8 63 6 61 4 59)(9 38 15 36 13 34 11 40)(10 53 16 51 14 49 12 55)(18 45 24 43 22 41 20 47)(25 52 31 50 29 56 27 54)(26 39 32 37 30 35 28 33)(42 62 48 60 46 58 44 64)

G:=sub<Sym(64)| (1,44)(2,45)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,57)(33,55)(34,56)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,10,53,17)(2,9,54,24)(3,16,55,23)(4,15,56,22)(5,14,49,21)(6,13,50,20)(7,12,51,19)(8,11,52,18)(25,40,57,45)(26,39,58,44)(27,38,59,43)(28,37,60,42)(29,36,61,41)(30,35,62,48)(31,34,63,47)(32,33,64,46), (1,23,7,21,5,19,3,17)(2,57,8,63,6,61,4,59)(9,38,15,36,13,34,11,40)(10,53,16,51,14,49,12,55)(18,45,24,43,22,41,20,47)(25,52,31,50,29,56,27,54)(26,39,32,37,30,35,28,33)(42,62,48,60,46,58,44,64)>;

G:=Group( (1,44)(2,45)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,57)(33,55)(34,56)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,10,53,17)(2,9,54,24)(3,16,55,23)(4,15,56,22)(5,14,49,21)(6,13,50,20)(7,12,51,19)(8,11,52,18)(25,40,57,45)(26,39,58,44)(27,38,59,43)(28,37,60,42)(29,36,61,41)(30,35,62,48)(31,34,63,47)(32,33,64,46), (1,23,7,21,5,19,3,17)(2,57,8,63,6,61,4,59)(9,38,15,36,13,34,11,40)(10,53,16,51,14,49,12,55)(18,45,24,43,22,41,20,47)(25,52,31,50,29,56,27,54)(26,39,32,37,30,35,28,33)(42,62,48,60,46,58,44,64) );

G=PermutationGroup([(1,44),(2,45),(3,46),(4,47),(5,48),(6,41),(7,42),(8,43),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,57),(33,55),(34,56),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,10,53,17),(2,9,54,24),(3,16,55,23),(4,15,56,22),(5,14,49,21),(6,13,50,20),(7,12,51,19),(8,11,52,18),(25,40,57,45),(26,39,58,44),(27,38,59,43),(28,37,60,42),(29,36,61,41),(30,35,62,48),(31,34,63,47),(32,33,64,46)], [(1,23,7,21,5,19,3,17),(2,57,8,63,6,61,4,59),(9,38,15,36,13,34,11,40),(10,53,16,51,14,49,12,55),(18,45,24,43,22,41,20,47),(25,52,31,50,29,56,27,54),(26,39,32,37,30,35,28,33),(42,62,48,60,46,58,44,64)])

32 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E4F4G4H4I···4N8A···8H
order12···222444444444···48···8
size11···188222244448···84···4

32 irreducible representations

dim1111111222222244
type++++++++++-++-
imageC1C2C2C2C2C2C2D4D4D4Q8D8C4○D4C4○D8C8⋊C22C8.C22
kernel(C2×C8).51D4C22.4Q16C23.65C23C24.3C22C2×D4⋊C4C2×C4⋊C8C2×C2.D8C4⋊C4C2×C8C22×C4C2×D4C2×C4C2×C4C22C22C22
# reps1111211222246411

Matrix representation of (C2×C8).51D4 in GL6(𝔽17)

1600000
0160000
001000
000100
0000160
0000016
,
16150000
010000
00141400
0031400
0000168
000041
,
100000
010000
005500
0051200
0000011
000030
,
100000
16160000
005500
0012500
0000011
000030

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,15,1,0,0,0,0,0,0,14,3,0,0,0,0,14,14,0,0,0,0,0,0,16,4,0,0,0,0,8,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,5,0,0,0,0,5,12,0,0,0,0,0,0,0,3,0,0,0,0,11,0],[1,16,0,0,0,0,0,16,0,0,0,0,0,0,5,12,0,0,0,0,5,5,0,0,0,0,0,0,0,3,0,0,0,0,11,0] >;

(C2×C8).51D4 in GAP, Magma, Sage, TeX

(C_2\times C_8)._{51}D_4
% in TeX

G:=Group("(C2xC8).51D4");
// GroupNames label

G:=SmallGroup(128,799);
// by ID

G=gap.SmallGroup(128,799);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,168,141,512,422,387,2019,521,248,2804,718,172,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=b^6,d*b*d^-1=a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*c*d^-1=b^6*c^-1>;
// generators/relations

׿
×
𝔽