Copied to
clipboard

G = C42.532C23order 128 = 27

393rd non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.532C23, C4.1532+ 1+4, C4⋊C4.189D4, (C4×Q16)⋊36C2, C84Q824C2, C42Q1646C2, C8.23(C4○D4), C8.2D423C2, (C2×Q8).144D4, C2.73(Q8○D8), C4⋊C4.453C23, C4⋊C8.155C22, (C2×C4).594C24, (C4×C8).212C22, (C2×C8).123C23, Q8.D450C2, D4.2D4.4C2, C8.12D4.7C2, (C2×D8).43C22, C4⋊Q8.220C22, SD16⋊C451C2, C8⋊C4.81C22, C2.48(Q86D4), (C2×D4).288C23, (C4×D4).227C22, (C2×Q8).273C23, (C4×Q8).217C22, C2.D8.230C22, Q8⋊C4.97C22, (C2×Q16).166C22, (C2×SD16).78C22, C4.4D4.94C22, C22.854(C22×D4), D4⋊C4.102C22, C2.109(D8⋊C22), C22.50C2417C2, C4.172(C2×C4○D4), (C2×C4).658(C2×D4), SmallGroup(128,2134)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.532C23
C1C2C4C2×C4C42C4×Q8C22.50C24 — C42.532C23
C1C2C2×C4 — C42.532C23
C1C22C4×Q8 — C42.532C23
C1C2C2C2×C4 — C42.532C23

Generators and relations for C42.532C23
 G = < a,b,c,d,e | a4=b4=1, c2=b2, d2=e2=a2b2, ab=ba, ac=ca, dad-1=a-1b2, ae=ea, cbc-1=ebe-1=b-1, bd=db, dcd-1=a2b2c, ece-1=bc, ede-1=b2d >

Subgroups: 328 in 178 conjugacy classes, 86 normal (26 characteristic)
C1, C2 [×3], C2 [×2], C4 [×2], C4 [×12], C22, C22 [×6], C8 [×2], C8 [×3], C2×C4 [×3], C2×C4 [×4], C2×C4 [×10], D4 [×4], Q8 [×9], C23 [×2], C42, C42 [×2], C42 [×4], C22⋊C4 [×10], C4⋊C4, C4⋊C4 [×4], C4⋊C4 [×8], C2×C8 [×2], C2×C8 [×2], D8, SD16 [×6], Q16 [×5], C22×C4 [×2], C2×D4 [×2], C2×Q8, C2×Q8 [×4], C4×C8, C8⋊C4 [×2], D4⋊C4 [×2], Q8⋊C4 [×4], C4⋊C8, C4⋊C8 [×2], C2.D8, C42⋊C2 [×2], C4×D4 [×2], C4×Q8, C4×Q8 [×4], C22⋊Q8 [×2], C4.4D4 [×4], C422C2 [×4], C4⋊Q8 [×2], C2×D8, C2×SD16 [×4], C2×Q16 [×2], C2×Q16 [×2], C4×Q16, SD16⋊C4 [×2], C84Q8, C42Q16 [×2], D4.2D4 [×2], Q8.D4 [×2], C8.12D4, C8.2D4 [×2], C22.50C24 [×2], C42.532C23
Quotients: C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×2], C24, C22×D4, C2×C4○D4, 2+ 1+4, Q86D4, D8⋊C22, Q8○D8, C42.532C23

Character table of C42.532C23

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q8A8B8C8D8E8F
 size 11118822224444444448888444488
ρ111111111111111111111111111111    trivial
ρ21111-1-1-11-111-1-111-1-11-1111-11-11-11-1    linear of order 2
ρ31111-1-11111-1111-1-111-1-11-111111-1-1    linear of order 2
ρ4111111-11-11-1-1-11-11-111-11-1-11-11-1-11    linear of order 2
ρ511111-11111111-1111-1111-1-1-1-1-1-1-1-1    linear of order 2
ρ61111-11-11-111-1-1-11-1-1-1-111-11-11-11-11    linear of order 2
ρ71111-111111-111-1-1-11-1-1-111-1-1-1-1-111    linear of order 2
ρ811111-1-11-11-1-1-1-1-11-1-11-1111-11-111-1    linear of order 2
ρ911111-1-11-1111-111-111-1-1-11-1-11-11-11    linear of order 2
ρ101111-1111111-11111-111-1-111-1-1-1-1-1-1    linear of order 2
ρ111111-11-11-11-11-11-111111-1-1-1-11-111-1    linear of order 2
ρ1211111-11111-1-111-1-1-11-11-1-11-1-1-1-111    linear of order 2
ρ13111111-11-1111-1-11-11-1-1-1-1-111-11-11-1    linear of order 2
ρ141111-1-111111-11-111-1-11-1-1-1-1111111    linear of order 2
ρ151111-1-1-11-11-11-1-1-111-111-1111-11-1-11    linear of order 2
ρ161111111111-1-11-1-1-1-1-1-11-11-11111-1-1    linear of order 2
ρ172222002-22-220-20-2-20020000000000    orthogonal lifted from D4
ρ182222002-22-2-20-202200-20000000000    orthogonal lifted from D4
ρ19222200-2-2-2-22020-2200-20000000000    orthogonal lifted from D4
ρ20222200-2-2-2-2-20202-20020000000000    orthogonal lifted from D4
ρ212-22-200020-202i02i00-2i-2i000000-20200    complex lifted from C4○D4
ρ222-22-200020-20-2i02i002i-2i00000020-200    complex lifted from C4○D4
ρ232-22-200020-20-2i0-2i002i2i000000-20200    complex lifted from C4○D4
ρ242-22-200020-202i0-2i00-2i2i00000020-200    complex lifted from C4○D4
ρ254-44-4000-4040000000000000000000    orthogonal lifted from 2+ 1+4
ρ2644-4-40000000000000000000220-22000    symplectic lifted from Q8○D8, Schur index 2
ρ2744-4-40000000000000000000-22022000    symplectic lifted from Q8○D8, Schur index 2
ρ284-4-4400-4i04i00000000000000000000    complex lifted from D8⋊C22
ρ294-4-44004i0-4i00000000000000000000    complex lifted from D8⋊C22

Smallest permutation representation of C42.532C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 20 26 23)(2 17 27 24)(3 18 28 21)(4 19 25 22)(5 12 63 15)(6 9 64 16)(7 10 61 13)(8 11 62 14)(29 37 41 36)(30 38 42 33)(31 39 43 34)(32 40 44 35)(45 56 60 51)(46 53 57 52)(47 54 58 49)(48 55 59 50)
(1 48 26 59)(2 45 27 60)(3 46 28 57)(4 47 25 58)(5 39 63 34)(6 40 64 35)(7 37 61 36)(8 38 62 33)(9 32 16 44)(10 29 13 41)(11 30 14 42)(12 31 15 43)(17 51 24 56)(18 52 21 53)(19 49 22 54)(20 50 23 55)
(1 45 28 58)(2 59 25 46)(3 47 26 60)(4 57 27 48)(5 44 61 30)(6 31 62 41)(7 42 63 32)(8 29 64 43)(9 39 14 36)(10 33 15 40)(11 37 16 34)(12 35 13 38)(17 50 22 53)(18 54 23 51)(19 52 24 55)(20 56 21 49)
(1 30 28 44)(2 31 25 41)(3 32 26 42)(4 29 27 43)(5 47 61 60)(6 48 62 57)(7 45 63 58)(8 46 64 59)(9 50 14 53)(10 51 15 54)(11 52 16 55)(12 49 13 56)(17 34 22 37)(18 35 23 38)(19 36 24 39)(20 33 21 40)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,26,23)(2,17,27,24)(3,18,28,21)(4,19,25,22)(5,12,63,15)(6,9,64,16)(7,10,61,13)(8,11,62,14)(29,37,41,36)(30,38,42,33)(31,39,43,34)(32,40,44,35)(45,56,60,51)(46,53,57,52)(47,54,58,49)(48,55,59,50), (1,48,26,59)(2,45,27,60)(3,46,28,57)(4,47,25,58)(5,39,63,34)(6,40,64,35)(7,37,61,36)(8,38,62,33)(9,32,16,44)(10,29,13,41)(11,30,14,42)(12,31,15,43)(17,51,24,56)(18,52,21,53)(19,49,22,54)(20,50,23,55), (1,45,28,58)(2,59,25,46)(3,47,26,60)(4,57,27,48)(5,44,61,30)(6,31,62,41)(7,42,63,32)(8,29,64,43)(9,39,14,36)(10,33,15,40)(11,37,16,34)(12,35,13,38)(17,50,22,53)(18,54,23,51)(19,52,24,55)(20,56,21,49), (1,30,28,44)(2,31,25,41)(3,32,26,42)(4,29,27,43)(5,47,61,60)(6,48,62,57)(7,45,63,58)(8,46,64,59)(9,50,14,53)(10,51,15,54)(11,52,16,55)(12,49,13,56)(17,34,22,37)(18,35,23,38)(19,36,24,39)(20,33,21,40)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,26,23)(2,17,27,24)(3,18,28,21)(4,19,25,22)(5,12,63,15)(6,9,64,16)(7,10,61,13)(8,11,62,14)(29,37,41,36)(30,38,42,33)(31,39,43,34)(32,40,44,35)(45,56,60,51)(46,53,57,52)(47,54,58,49)(48,55,59,50), (1,48,26,59)(2,45,27,60)(3,46,28,57)(4,47,25,58)(5,39,63,34)(6,40,64,35)(7,37,61,36)(8,38,62,33)(9,32,16,44)(10,29,13,41)(11,30,14,42)(12,31,15,43)(17,51,24,56)(18,52,21,53)(19,49,22,54)(20,50,23,55), (1,45,28,58)(2,59,25,46)(3,47,26,60)(4,57,27,48)(5,44,61,30)(6,31,62,41)(7,42,63,32)(8,29,64,43)(9,39,14,36)(10,33,15,40)(11,37,16,34)(12,35,13,38)(17,50,22,53)(18,54,23,51)(19,52,24,55)(20,56,21,49), (1,30,28,44)(2,31,25,41)(3,32,26,42)(4,29,27,43)(5,47,61,60)(6,48,62,57)(7,45,63,58)(8,46,64,59)(9,50,14,53)(10,51,15,54)(11,52,16,55)(12,49,13,56)(17,34,22,37)(18,35,23,38)(19,36,24,39)(20,33,21,40) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,20,26,23),(2,17,27,24),(3,18,28,21),(4,19,25,22),(5,12,63,15),(6,9,64,16),(7,10,61,13),(8,11,62,14),(29,37,41,36),(30,38,42,33),(31,39,43,34),(32,40,44,35),(45,56,60,51),(46,53,57,52),(47,54,58,49),(48,55,59,50)], [(1,48,26,59),(2,45,27,60),(3,46,28,57),(4,47,25,58),(5,39,63,34),(6,40,64,35),(7,37,61,36),(8,38,62,33),(9,32,16,44),(10,29,13,41),(11,30,14,42),(12,31,15,43),(17,51,24,56),(18,52,21,53),(19,49,22,54),(20,50,23,55)], [(1,45,28,58),(2,59,25,46),(3,47,26,60),(4,57,27,48),(5,44,61,30),(6,31,62,41),(7,42,63,32),(8,29,64,43),(9,39,14,36),(10,33,15,40),(11,37,16,34),(12,35,13,38),(17,50,22,53),(18,54,23,51),(19,52,24,55),(20,56,21,49)], [(1,30,28,44),(2,31,25,41),(3,32,26,42),(4,29,27,43),(5,47,61,60),(6,48,62,57),(7,45,63,58),(8,46,64,59),(9,50,14,53),(10,51,15,54),(11,52,16,55),(12,49,13,56),(17,34,22,37),(18,35,23,38),(19,36,24,39),(20,33,21,40)])

Matrix representation of C42.532C23 in GL6(𝔽17)

0160000
100000
0013000
0001300
0000130
0000013
,
100000
010000
000100
0016000
0000016
000010
,
0130000
400000
00160161
00011616
0011016
00161160
,
1300000
040000
0040413
00041313
00134130
0044013
,
1300000
0130000
000010
000001
001000
000100

G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[0,4,0,0,0,0,13,0,0,0,0,0,0,0,16,0,1,16,0,0,0,1,1,1,0,0,16,16,0,16,0,0,1,16,16,0],[13,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,13,4,0,0,0,4,4,4,0,0,4,13,13,0,0,0,13,13,0,13],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

C42.532C23 in GAP, Magma, Sage, TeX

C_4^2._{532}C_2^3
% in TeX

G:=Group("C4^2.532C2^3");
// GroupNames label

G:=SmallGroup(128,2134);
// by ID

G=gap.SmallGroup(128,2134);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,120,758,723,100,346,304,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=b^2,d^2=e^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=a^2*b^2*c,e*c*e^-1=b*c,e*d*e^-1=b^2*d>;
// generators/relations

Export

Character table of C42.532C23 in TeX

׿
×
𝔽