extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xDic3).1D4 = C23.5D12 | φ: D4/C1 → D4 ⊆ Out C2xDic3 | 48 | 8- | (C2xDic3).1D4 | 192,301 |
(C2xDic3).2D4 = Q8.14D12 | φ: D4/C1 → D4 ⊆ Out C2xDic3 | 48 | 4- | (C2xDic3).2D4 | 192,385 |
(C2xDic3).3D4 = D4.10D12 | φ: D4/C1 → D4 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).3D4 | 192,386 |
(C2xDic3).4D4 = C22:C4:D6 | φ: D4/C1 → D4 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).4D4 | 192,612 |
(C2xDic3).5D4 = D12.38D4 | φ: D4/C1 → D4 ⊆ Out C2xDic3 | 48 | 8- | (C2xDic3).5D4 | 192,760 |
(C2xDic3).6D4 = D12.40D4 | φ: D4/C1 → D4 ⊆ Out C2xDic3 | 48 | 8- | (C2xDic3).6D4 | 192,764 |
(C2xDic3).7D4 = (C2xC4):Dic6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).7D4 | 192,215 |
(C2xDic3).8D4 = C6.(C4:Q8) | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).8D4 | 192,216 |
(C2xDic3).9D4 = (C2xDic3).9D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).9D4 | 192,217 |
(C2xDic3).10D4 = (C2xC4).Dic6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).10D4 | 192,219 |
(C2xDic3).11D4 = (C22xC4).85D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).11D4 | 192,220 |
(C2xDic3).12D4 = (C22xS3):Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).12D4 | 192,232 |
(C2xDic3).13D4 = C6.(C4:D4) | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).13D4 | 192,234 |
(C2xDic3).14D4 = (C22xC4).37D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).14D4 | 192,235 |
(C2xDic3).15D4 = C4:C4.D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).15D4 | 192,323 |
(C2xDic3).16D4 = C12:Q8:C2 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).16D4 | 192,324 |
(C2xDic3).17D4 = Dic6.D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).17D4 | 192,326 |
(C2xDic3).18D4 = D4:D12 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).18D4 | 192,332 |
(C2xDic3).19D4 = D6.D8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).19D4 | 192,333 |
(C2xDic3).20D4 = D6:5SD16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).20D4 | 192,335 |
(C2xDic3).21D4 = D6.SD16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).21D4 | 192,336 |
(C2xDic3).22D4 = C3:C8:1D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).22D4 | 192,339 |
(C2xDic3).23D4 = C3:C8:D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).23D4 | 192,341 |
(C2xDic3).24D4 = D12:3D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).24D4 | 192,345 |
(C2xDic3).25D4 = D12.D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).25D4 | 192,346 |
(C2xDic3).26D4 = (C2xC8).D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).26D4 | 192,353 |
(C2xDic3).27D4 = (C2xQ8).36D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).27D4 | 192,356 |
(C2xDic3).28D4 = Dic6.11D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).28D4 | 192,357 |
(C2xDic3).29D4 = D6.1SD16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).29D4 | 192,364 |
(C2xDic3).30D4 = Q8:3D12 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).30D4 | 192,365 |
(C2xDic3).31D4 = D6:Q16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).31D4 | 192,368 |
(C2xDic3).32D4 = D6.Q16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).32D4 | 192,370 |
(C2xDic3).33D4 = C3:(C8:D4) | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).33D4 | 192,371 |
(C2xDic3).34D4 = C3:C8.D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).34D4 | 192,375 |
(C2xDic3).35D4 = Dic3:SD16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).35D4 | 192,377 |
(C2xDic3).36D4 = D12.12D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).36D4 | 192,378 |
(C2xDic3).37D4 = C42:3D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).37D4 | 192,380 |
(C2xDic3).38D4 = C24:3Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).38D4 | 192,415 |
(C2xDic3).39D4 = Dic6.Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).39D4 | 192,416 |
(C2xDic3).40D4 = D6.2SD16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).40D4 | 192,421 |
(C2xDic3).41D4 = D6.4SD16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).41D4 | 192,422 |
(C2xDic3).42D4 = C24:7D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).42D4 | 192,424 |
(C2xDic3).43D4 = C8.2D12 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).43D4 | 192,426 |
(C2xDic3).44D4 = D12:Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).44D4 | 192,429 |
(C2xDic3).45D4 = D12.Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).45D4 | 192,430 |
(C2xDic3).46D4 = C24:4Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).46D4 | 192,435 |
(C2xDic3).47D4 = Dic6.2Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).47D4 | 192,436 |
(C2xDic3).48D4 = D6.5D8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).48D4 | 192,441 |
(C2xDic3).49D4 = D6.2Q16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).49D4 | 192,443 |
(C2xDic3).50D4 = C8:3D12 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).50D4 | 192,445 |
(C2xDic3).51D4 = D12:2Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).51D4 | 192,449 |
(C2xDic3).52D4 = D12.2Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).52D4 | 192,450 |
(C2xDic3).53D4 = C23:2Dic6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).53D4 | 192,506 |
(C2xDic3).54D4 = C24.17D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).54D4 | 192,507 |
(C2xDic3).55D4 = C24.18D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).55D4 | 192,508 |
(C2xDic3).56D4 = C24.20D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).56D4 | 192,511 |
(C2xDic3).57D4 = C24.27D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).57D4 | 192,520 |
(C2xDic3).58D4 = (C2xDic3):Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).58D4 | 192,538 |
(C2xDic3).59D4 = (C2xC12).54D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).59D4 | 192,541 |
(C2xDic3).60D4 = (C2xDic3).Q8 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 192 | | (C2xDic3).60D4 | 192,542 |
(C2xDic3).61D4 = (C2xC12).290D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).61D4 | 192,552 |
(C2xDic3).62D4 = (C2xC12).56D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).62D4 | 192,553 |
(C2xDic3).63D4 = (C6xD8).C2 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).63D4 | 192,712 |
(C2xDic3).64D4 = C24:11D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).64D4 | 192,713 |
(C2xDic3).65D4 = D12:D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).65D4 | 192,715 |
(C2xDic3).66D4 = C24:12D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).66D4 | 192,718 |
(C2xDic3).67D4 = Dic3:5SD16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).67D4 | 192,722 |
(C2xDic3).68D4 = (C3xD4).D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).68D4 | 192,724 |
(C2xDic3).69D4 = (C3xQ8).D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).69D4 | 192,725 |
(C2xDic3).70D4 = C24.31D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).70D4 | 192,726 |
(C2xDic3).71D4 = D6:6SD16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).71D4 | 192,728 |
(C2xDic3).72D4 = D6:8SD16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).72D4 | 192,729 |
(C2xDic3).73D4 = C24:8D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).73D4 | 192,733 |
(C2xDic3).74D4 = C24:9D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).74D4 | 192,735 |
(C2xDic3).75D4 = (C2xQ16):S3 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).75D4 | 192,744 |
(C2xDic3).76D4 = D6:5Q16 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).76D4 | 192,745 |
(C2xDic3).77D4 = C24.36D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).77D4 | 192,748 |
(C2xDic3).78D4 = C24.37D4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).78D4 | 192,749 |
(C2xDic3).79D4 = C6.792- 1+4 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).79D4 | 192,1207 |
(C2xDic3).80D4 = SD16:D6 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).80D4 | 192,1327 |
(C2xDic3).81D4 = S3xC8:C22 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 24 | 8+ | (C2xDic3).81D4 | 192,1331 |
(C2xDic3).82D4 = S3xC8.C22 | φ: D4/C2 → C22 ⊆ Out C2xDic3 | 48 | 8- | (C2xDic3).82D4 | 192,1335 |
(C2xDic3).83D4 = C3:(C42:8C4) | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).83D4 | 192,209 |
(C2xDic3).84D4 = D6:C4:5C4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).84D4 | 192,228 |
(C2xDic3).85D4 = D6:C4:3C4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).85D4 | 192,229 |
(C2xDic3).86D4 = Dic3.SD16 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).86D4 | 192,319 |
(C2xDic3).87D4 = (C2xC8).200D6 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).87D4 | 192,327 |
(C2xDic3).88D4 = S3xD4:C4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).88D4 | 192,328 |
(C2xDic3).89D4 = D6:D8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).89D4 | 192,334 |
(C2xDic3).90D4 = D6:SD16 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).90D4 | 192,337 |
(C2xDic3).91D4 = Dic3.1Q16 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).91D4 | 192,351 |
(C2xDic3).92D4 = Q8:C4:S3 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).92D4 | 192,359 |
(C2xDic3).93D4 = S3xQ8:C4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).93D4 | 192,360 |
(C2xDic3).94D4 = D6:2SD16 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).94D4 | 192,366 |
(C2xDic3).95D4 = D6:1Q16 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).95D4 | 192,372 |
(C2xDic3).96D4 = C24:5Q8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).96D4 | 192,414 |
(C2xDic3).97D4 = C8.8Dic6 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).97D4 | 192,417 |
(C2xDic3).98D4 = S3xC4.Q8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).98D4 | 192,418 |
(C2xDic3).99D4 = C8:8D12 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).99D4 | 192,423 |
(C2xDic3).100D4 = C24:2Q8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).100D4 | 192,433 |
(C2xDic3).101D4 = C8.6Dic6 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).101D4 | 192,437 |
(C2xDic3).102D4 = S3xC2.D8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).102D4 | 192,438 |
(C2xDic3).103D4 = D6:2D8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).103D4 | 192,442 |
(C2xDic3).104D4 = D6:2Q16 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).104D4 | 192,446 |
(C2xDic3).105D4 = C24.14D6 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).105D4 | 192,503 |
(C2xDic3).106D4 = C24.19D6 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).106D4 | 192,510 |
(C2xDic3).107D4 = C12:(C4:C4) | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).107D4 | 192,531 |
(C2xDic3).108D4 = (C4xDic3):8C4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).108D4 | 192,534 |
(C2xDic3).109D4 = C4:C4:6Dic3 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).109D4 | 192,543 |
(C2xDic3).110D4 = C24:5D4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).110D4 | 192,710 |
(C2xDic3).111D4 = C24.22D4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).111D4 | 192,714 |
(C2xDic3).112D4 = D6:3D8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).112D4 | 192,716 |
(C2xDic3).113D4 = C24.43D4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).113D4 | 192,727 |
(C2xDic3).114D4 = C24:14D4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).114D4 | 192,730 |
(C2xDic3).115D4 = C24:15D4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).115D4 | 192,734 |
(C2xDic3).116D4 = C24.26D4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).116D4 | 192,742 |
(C2xDic3).117D4 = D6:3Q16 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).117D4 | 192,747 |
(C2xDic3).118D4 = C24.28D4 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).118D4 | 192,750 |
(C2xDic3).119D4 = C2xC23.11D6 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).119D4 | 192,1050 |
(C2xDic3).120D4 = C2xC12:Q8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).120D4 | 192,1056 |
(C2xDic3).121D4 = C2xS3xD8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).121D4 | 192,1313 |
(C2xDic3).122D4 = C2xS3xSD16 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).122D4 | 192,1317 |
(C2xDic3).123D4 = C2xS3xQ16 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).123D4 | 192,1322 |
(C2xDic3).124D4 = S3xC4oD8 | φ: D4/C4 → C2 ⊆ Out C2xDic3 | 48 | 4 | (C2xDic3).124D4 | 192,1326 |
(C2xDic3).125D4 = (C2xC12):Q8 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).125D4 | 192,205 |
(C2xDic3).126D4 = C6.(C4xQ8) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).126D4 | 192,206 |
(C2xDic3).127D4 = C6.(C4xD4) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).127D4 | 192,211 |
(C2xDic3).128D4 = C2.(C4xDic6) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).128D4 | 192,213 |
(C2xDic3).129D4 = Dic3:C4:C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).129D4 | 192,214 |
(C2xDic3).130D4 = D6:(C4:C4) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).130D4 | 192,226 |
(C2xDic3).131D4 = D6:C4:C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).131D4 | 192,227 |
(C2xDic3).132D4 = C23:C4:5S3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 48 | 8- | (C2xDic3).132D4 | 192,299 |
(C2xDic3).133D4 = D4.S3:C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).133D4 | 192,316 |
(C2xDic3).134D4 = Dic3.D8 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).134D4 | 192,318 |
(C2xDic3).135D4 = D4:Dic6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).135D4 | 192,320 |
(C2xDic3).136D4 = Dic6:2D4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).136D4 | 192,321 |
(C2xDic3).137D4 = D4.Dic6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).137D4 | 192,322 |
(C2xDic3).138D4 = D4.2Dic6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).138D4 | 192,325 |
(C2xDic3).139D4 = C4:C4:19D6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).139D4 | 192,329 |
(C2xDic3).140D4 = D4:(C4xS3) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).140D4 | 192,330 |
(C2xDic3).141D4 = D6:C8:11C2 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).141D4 | 192,338 |
(C2xDic3).142D4 = D4:3D12 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).142D4 | 192,340 |
(C2xDic3).143D4 = D4.D12 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).143D4 | 192,342 |
(C2xDic3).144D4 = C24:1C4:C2 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).144D4 | 192,343 |
(C2xDic3).145D4 = D4:S3:C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).145D4 | 192,344 |
(C2xDic3).146D4 = C3:Q16:C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).146D4 | 192,348 |
(C2xDic3).147D4 = Q8:2Dic6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).147D4 | 192,350 |
(C2xDic3).148D4 = Q8:3Dic6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).148D4 | 192,352 |
(C2xDic3).149D4 = Dic3:Q16 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).149D4 | 192,354 |
(C2xDic3).150D4 = Q8.3Dic6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).150D4 | 192,355 |
(C2xDic3).151D4 = Q8.4Dic6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).151D4 | 192,358 |
(C2xDic3).152D4 = (S3xQ8):C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).152D4 | 192,361 |
(C2xDic3).153D4 = Q8:7(C4xS3) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).153D4 | 192,362 |
(C2xDic3).154D4 = Q8.11D12 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).154D4 | 192,367 |
(C2xDic3).155D4 = Q8:4D12 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).155D4 | 192,369 |
(C2xDic3).156D4 = D6:C8.C2 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).156D4 | 192,373 |
(C2xDic3).157D4 = C8:Dic3:C2 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).157D4 | 192,374 |
(C2xDic3).158D4 = Q8:3(C4xS3) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).158D4 | 192,376 |
(C2xDic3).159D4 = S3xC4wrC2 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 24 | 4 | (C2xDic3).159D4 | 192,379 |
(C2xDic3).160D4 = Dic12:9C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).160D4 | 192,412 |
(C2xDic3).161D4 = Dic6:Q8 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).161D4 | 192,413 |
(C2xDic3).162D4 = C8:(C4xS3) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).162D4 | 192,420 |
(C2xDic3).163D4 = C4.Q8:S3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).163D4 | 192,425 |
(C2xDic3).164D4 = C6.(C4oD8) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).164D4 | 192,427 |
(C2xDic3).165D4 = D24:9C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).165D4 | 192,428 |
(C2xDic3).166D4 = Dic3.Q16 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).166D4 | 192,434 |
(C2xDic3).167D4 = C8:S3:C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).167D4 | 192,440 |
(C2xDic3).168D4 = C2.D8:S3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).168D4 | 192,444 |
(C2xDic3).169D4 = C2.D8:7S3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).169D4 | 192,447 |
(C2xDic3).170D4 = C24:C2:C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).170D4 | 192,448 |
(C2xDic3).171D4 = C24.55D6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).171D4 | 192,501 |
(C2xDic3).172D4 = C24.15D6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).172D4 | 192,504 |
(C2xDic3).173D4 = C24.57D6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).173D4 | 192,505 |
(C2xDic3).174D4 = C24.58D6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).174D4 | 192,509 |
(C2xDic3).175D4 = Dic3:(C4:C4) | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).175D4 | 192,535 |
(C2xDic3).176D4 = C4:C4:5Dic3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).176D4 | 192,539 |
(C2xDic3).177D4 = D6:C4:6C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).177D4 | 192,548 |
(C2xDic3).178D4 = D6:C4:7C4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).178D4 | 192,549 |
(C2xDic3).179D4 = Dic3:D8 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).179D4 | 192,709 |
(C2xDic3).180D4 = D8:Dic3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).180D4 | 192,711 |
(C2xDic3).181D4 = Dic6:D4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).181D4 | 192,717 |
(C2xDic3).182D4 = Dic3:3SD16 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).182D4 | 192,721 |
(C2xDic3).183D4 = SD16:Dic3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).183D4 | 192,723 |
(C2xDic3).184D4 = D12:7D4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).184D4 | 192,731 |
(C2xDic3).185D4 = Dic6.16D4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).185D4 | 192,732 |
(C2xDic3).186D4 = Dic3:3Q16 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).186D4 | 192,741 |
(C2xDic3).187D4 = Q16:Dic3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 192 | | (C2xDic3).187D4 | 192,743 |
(C2xDic3).188D4 = D12.17D4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).188D4 | 192,746 |
(C2xDic3).189D4 = C2xDic3.D4 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).189D4 | 192,1040 |
(C2xDic3).190D4 = C2xD6:Q8 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).190D4 | 192,1067 |
(C2xDic3).191D4 = C2xD8:S3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).191D4 | 192,1314 |
(C2xDic3).192D4 = C2xQ8:3D6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).192D4 | 192,1318 |
(C2xDic3).193D4 = C2xD4.D6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).193D4 | 192,1319 |
(C2xDic3).194D4 = C2xQ16:S3 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).194D4 | 192,1323 |
(C2xDic3).195D4 = D8:4D6 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 48 | 8- | (C2xDic3).195D4 | 192,1332 |
(C2xDic3).196D4 = D24:C22 | φ: D4/C22 → C2 ⊆ Out C2xDic3 | 48 | 8+ | (C2xDic3).196D4 | 192,1336 |
(C2xDic3).197D4 = Dic3:C42 | φ: trivial image | 192 | | (C2xDic3).197D4 | 192,208 |
(C2xDic3).198D4 = D6:C42 | φ: trivial image | 96 | | (C2xDic3).198D4 | 192,225 |
(C2xDic3).199D4 = Dic3:4D8 | φ: trivial image | 96 | | (C2xDic3).199D4 | 192,315 |
(C2xDic3).200D4 = Dic3:6SD16 | φ: trivial image | 96 | | (C2xDic3).200D4 | 192,317 |
(C2xDic3).201D4 = D4:2S3:C4 | φ: trivial image | 96 | | (C2xDic3).201D4 | 192,331 |
(C2xDic3).202D4 = Dic3:7SD16 | φ: trivial image | 96 | | (C2xDic3).202D4 | 192,347 |
(C2xDic3).203D4 = Dic3:4Q16 | φ: trivial image | 192 | | (C2xDic3).203D4 | 192,349 |
(C2xDic3).204D4 = C4:C4.150D6 | φ: trivial image | 96 | | (C2xDic3).204D4 | 192,363 |
(C2xDic3).205D4 = Dic3:8SD16 | φ: trivial image | 96 | | (C2xDic3).205D4 | 192,411 |
(C2xDic3).206D4 = (S3xC8):C4 | φ: trivial image | 96 | | (C2xDic3).206D4 | 192,419 |
(C2xDic3).207D4 = Dic3:5D8 | φ: trivial image | 96 | | (C2xDic3).207D4 | 192,431 |
(C2xDic3).208D4 = Dic3:5Q16 | φ: trivial image | 192 | | (C2xDic3).208D4 | 192,432 |
(C2xDic3).209D4 = C8.27(C4xS3) | φ: trivial image | 96 | | (C2xDic3).209D4 | 192,439 |
(C2xDic3).210D4 = Dic3xC22:C4 | φ: trivial image | 96 | | (C2xDic3).210D4 | 192,500 |
(C2xDic3).211D4 = Dic3xC4:C4 | φ: trivial image | 192 | | (C2xDic3).211D4 | 192,533 |
(C2xDic3).212D4 = Dic3xD8 | φ: trivial image | 96 | | (C2xDic3).212D4 | 192,708 |
(C2xDic3).213D4 = Dic3xSD16 | φ: trivial image | 96 | | (C2xDic3).213D4 | 192,720 |
(C2xDic3).214D4 = Dic3xQ16 | φ: trivial image | 192 | | (C2xDic3).214D4 | 192,740 |
(C2xDic3).215D4 = C2xD8:3S3 | φ: trivial image | 96 | | (C2xDic3).215D4 | 192,1315 |
(C2xDic3).216D4 = C2xQ8.7D6 | φ: trivial image | 96 | | (C2xDic3).216D4 | 192,1320 |
(C2xDic3).217D4 = C2xD24:C2 | φ: trivial image | 96 | | (C2xDic3).217D4 | 192,1324 |