Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=D4

Direct product G=NxQ with N=C2xDic3 and Q=D4
dρLabelID
C2xD4xDic396C2xD4xDic3192,1354

Semidirect products G=N:Q with N=C2xDic3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2xDic3):1D4 = C23:D12φ: D4/C1D4 ⊆ Out C2xDic3248+(C2xDic3):1D4192,300
(C2xDic3):2D4 = C24:6D6φ: D4/C1D4 ⊆ Out C2xDic3244(C2xDic3):2D4192,591
(C2xDic3):3D4 = C6.C22wrC2φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3):3D4192,231
(C2xDic3):4D4 = C24.25D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3):4D4192,518
(C2xDic3):5D4 = C23:3D12φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3):5D4192,519
(C2xDic3):6D4 = C24.31D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3):6D4192,781
(C2xDic3):7D4 = C24.32D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3):7D4192,782
(C2xDic3):8D4 = C24.45D6φ: D4/C2C22 ⊆ Out C2xDic348(C2xDic3):8D4192,1151
(C2xDic3):9D4 = C6.322+ 1+4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3):9D4192,1156
(C2xDic3):10D4 = C24.24D6φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3):10D4192,516
(C2xDic3):11D4 = (C2xD12):10C4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3):11D4192,547
(C2xDic3):12D4 = C24.30D6φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3):12D4192,780
(C2xDic3):13D4 = C12:(C4oD4)φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3):13D4192,1155
(C2xDic3):14D4 = C2xC12:3D4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3):14D4192,1362
(C2xDic3):15D4 = (C2xC4):9D12φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3):15D4192,224
(C2xDic3):16D4 = C24.23D6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3):16D4192,515
(C2xDic3):17D4 = C24.60D6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3):17D4192,517
(C2xDic3):18D4 = C24.29D6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3):18D4192,779
(C2xDic3):19D4 = C2xDic3:D4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3):19D4192,1048
(C2xDic3):20D4 = C24.67D6φ: D4/C22C2 ⊆ Out C2xDic348(C2xDic3):20D4192,1145
(C2xDic3):21D4 = C4:C4:28D6φ: D4/C22C2 ⊆ Out C2xDic348(C2xDic3):21D4192,1215
(C2xDic3):22D4 = C2xC23.14D6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3):22D4192,1361
(C2xDic3):23D4 = C2xDic3:4D4φ: trivial image96(C2xDic3):23D4192,1044
(C2xDic3):24D4 = C2xDic3:5D4φ: trivial image96(C2xDic3):24D4192,1062

Non-split extensions G=N.Q with N=C2xDic3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2xDic3).1D4 = C23.5D12φ: D4/C1D4 ⊆ Out C2xDic3488-(C2xDic3).1D4192,301
(C2xDic3).2D4 = Q8.14D12φ: D4/C1D4 ⊆ Out C2xDic3484-(C2xDic3).2D4192,385
(C2xDic3).3D4 = D4.10D12φ: D4/C1D4 ⊆ Out C2xDic3484(C2xDic3).3D4192,386
(C2xDic3).4D4 = C22:C4:D6φ: D4/C1D4 ⊆ Out C2xDic3484(C2xDic3).4D4192,612
(C2xDic3).5D4 = D12.38D4φ: D4/C1D4 ⊆ Out C2xDic3488-(C2xDic3).5D4192,760
(C2xDic3).6D4 = D12.40D4φ: D4/C1D4 ⊆ Out C2xDic3488-(C2xDic3).6D4192,764
(C2xDic3).7D4 = (C2xC4):Dic6φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).7D4192,215
(C2xDic3).8D4 = C6.(C4:Q8)φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).8D4192,216
(C2xDic3).9D4 = (C2xDic3).9D4φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).9D4192,217
(C2xDic3).10D4 = (C2xC4).Dic6φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).10D4192,219
(C2xDic3).11D4 = (C22xC4).85D6φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).11D4192,220
(C2xDic3).12D4 = (C22xS3):Q8φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).12D4192,232
(C2xDic3).13D4 = C6.(C4:D4)φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).13D4192,234
(C2xDic3).14D4 = (C22xC4).37D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).14D4192,235
(C2xDic3).15D4 = C4:C4.D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).15D4192,323
(C2xDic3).16D4 = C12:Q8:C2φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).16D4192,324
(C2xDic3).17D4 = Dic6.D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).17D4192,326
(C2xDic3).18D4 = D4:D12φ: D4/C2C22 ⊆ Out C2xDic348(C2xDic3).18D4192,332
(C2xDic3).19D4 = D6.D8φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).19D4192,333
(C2xDic3).20D4 = D6:5SD16φ: D4/C2C22 ⊆ Out C2xDic348(C2xDic3).20D4192,335
(C2xDic3).21D4 = D6.SD16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).21D4192,336
(C2xDic3).22D4 = C3:C8:1D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).22D4192,339
(C2xDic3).23D4 = C3:C8:D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).23D4192,341
(C2xDic3).24D4 = D12:3D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).24D4192,345
(C2xDic3).25D4 = D12.D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).25D4192,346
(C2xDic3).26D4 = (C2xC8).D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).26D4192,353
(C2xDic3).27D4 = (C2xQ8).36D6φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).27D4192,356
(C2xDic3).28D4 = Dic6.11D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).28D4192,357
(C2xDic3).29D4 = D6.1SD16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).29D4192,364
(C2xDic3).30D4 = Q8:3D12φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).30D4192,365
(C2xDic3).31D4 = D6:Q16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).31D4192,368
(C2xDic3).32D4 = D6.Q16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).32D4192,370
(C2xDic3).33D4 = C3:(C8:D4)φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).33D4192,371
(C2xDic3).34D4 = C3:C8.D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).34D4192,375
(C2xDic3).35D4 = Dic3:SD16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).35D4192,377
(C2xDic3).36D4 = D12.12D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).36D4192,378
(C2xDic3).37D4 = C42:3D6φ: D4/C2C22 ⊆ Out C2xDic3484(C2xDic3).37D4192,380
(C2xDic3).38D4 = C24:3Q8φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).38D4192,415
(C2xDic3).39D4 = Dic6.Q8φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).39D4192,416
(C2xDic3).40D4 = D6.2SD16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).40D4192,421
(C2xDic3).41D4 = D6.4SD16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).41D4192,422
(C2xDic3).42D4 = C24:7D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).42D4192,424
(C2xDic3).43D4 = C8.2D12φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).43D4192,426
(C2xDic3).44D4 = D12:Q8φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).44D4192,429
(C2xDic3).45D4 = D12.Q8φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).45D4192,430
(C2xDic3).46D4 = C24:4Q8φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).46D4192,435
(C2xDic3).47D4 = Dic6.2Q8φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).47D4192,436
(C2xDic3).48D4 = D6.5D8φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).48D4192,441
(C2xDic3).49D4 = D6.2Q16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).49D4192,443
(C2xDic3).50D4 = C8:3D12φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).50D4192,445
(C2xDic3).51D4 = D12:2Q8φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).51D4192,449
(C2xDic3).52D4 = D12.2Q8φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).52D4192,450
(C2xDic3).53D4 = C23:2Dic6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).53D4192,506
(C2xDic3).54D4 = C24.17D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).54D4192,507
(C2xDic3).55D4 = C24.18D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).55D4192,508
(C2xDic3).56D4 = C24.20D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).56D4192,511
(C2xDic3).57D4 = C24.27D6φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).57D4192,520
(C2xDic3).58D4 = (C2xDic3):Q8φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).58D4192,538
(C2xDic3).59D4 = (C2xC12).54D4φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).59D4192,541
(C2xDic3).60D4 = (C2xDic3).Q8φ: D4/C2C22 ⊆ Out C2xDic3192(C2xDic3).60D4192,542
(C2xDic3).61D4 = (C2xC12).290D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).61D4192,552
(C2xDic3).62D4 = (C2xC12).56D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).62D4192,553
(C2xDic3).63D4 = (C6xD8).C2φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).63D4192,712
(C2xDic3).64D4 = C24:11D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).64D4192,713
(C2xDic3).65D4 = D12:D4φ: D4/C2C22 ⊆ Out C2xDic348(C2xDic3).65D4192,715
(C2xDic3).66D4 = C24:12D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).66D4192,718
(C2xDic3).67D4 = Dic3:5SD16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).67D4192,722
(C2xDic3).68D4 = (C3xD4).D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).68D4192,724
(C2xDic3).69D4 = (C3xQ8).D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).69D4192,725
(C2xDic3).70D4 = C24.31D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).70D4192,726
(C2xDic3).71D4 = D6:6SD16φ: D4/C2C22 ⊆ Out C2xDic348(C2xDic3).71D4192,728
(C2xDic3).72D4 = D6:8SD16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).72D4192,729
(C2xDic3).73D4 = C24:8D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).73D4192,733
(C2xDic3).74D4 = C24:9D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).74D4192,735
(C2xDic3).75D4 = (C2xQ16):S3φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).75D4192,744
(C2xDic3).76D4 = D6:5Q16φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).76D4192,745
(C2xDic3).77D4 = C24.36D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).77D4192,748
(C2xDic3).78D4 = C24.37D4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).78D4192,749
(C2xDic3).79D4 = C6.792- 1+4φ: D4/C2C22 ⊆ Out C2xDic396(C2xDic3).79D4192,1207
(C2xDic3).80D4 = SD16:D6φ: D4/C2C22 ⊆ Out C2xDic3484(C2xDic3).80D4192,1327
(C2xDic3).81D4 = S3xC8:C22φ: D4/C2C22 ⊆ Out C2xDic3248+(C2xDic3).81D4192,1331
(C2xDic3).82D4 = S3xC8.C22φ: D4/C2C22 ⊆ Out C2xDic3488-(C2xDic3).82D4192,1335
(C2xDic3).83D4 = C3:(C42:8C4)φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).83D4192,209
(C2xDic3).84D4 = D6:C4:5C4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).84D4192,228
(C2xDic3).85D4 = D6:C4:3C4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).85D4192,229
(C2xDic3).86D4 = Dic3.SD16φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).86D4192,319
(C2xDic3).87D4 = (C2xC8).200D6φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).87D4192,327
(C2xDic3).88D4 = S3xD4:C4φ: D4/C4C2 ⊆ Out C2xDic348(C2xDic3).88D4192,328
(C2xDic3).89D4 = D6:D8φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).89D4192,334
(C2xDic3).90D4 = D6:SD16φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).90D4192,337
(C2xDic3).91D4 = Dic3.1Q16φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).91D4192,351
(C2xDic3).92D4 = Q8:C4:S3φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).92D4192,359
(C2xDic3).93D4 = S3xQ8:C4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).93D4192,360
(C2xDic3).94D4 = D6:2SD16φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).94D4192,366
(C2xDic3).95D4 = D6:1Q16φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).95D4192,372
(C2xDic3).96D4 = C24:5Q8φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).96D4192,414
(C2xDic3).97D4 = C8.8Dic6φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).97D4192,417
(C2xDic3).98D4 = S3xC4.Q8φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).98D4192,418
(C2xDic3).99D4 = C8:8D12φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).99D4192,423
(C2xDic3).100D4 = C24:2Q8φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).100D4192,433
(C2xDic3).101D4 = C8.6Dic6φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).101D4192,437
(C2xDic3).102D4 = S3xC2.D8φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).102D4192,438
(C2xDic3).103D4 = D6:2D8φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).103D4192,442
(C2xDic3).104D4 = D6:2Q16φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).104D4192,446
(C2xDic3).105D4 = C24.14D6φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).105D4192,503
(C2xDic3).106D4 = C24.19D6φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).106D4192,510
(C2xDic3).107D4 = C12:(C4:C4)φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).107D4192,531
(C2xDic3).108D4 = (C4xDic3):8C4φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).108D4192,534
(C2xDic3).109D4 = C4:C4:6Dic3φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).109D4192,543
(C2xDic3).110D4 = C24:5D4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).110D4192,710
(C2xDic3).111D4 = C24.22D4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).111D4192,714
(C2xDic3).112D4 = D6:3D8φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).112D4192,716
(C2xDic3).113D4 = C24.43D4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).113D4192,727
(C2xDic3).114D4 = C24:14D4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).114D4192,730
(C2xDic3).115D4 = C24:15D4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).115D4192,734
(C2xDic3).116D4 = C24.26D4φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).116D4192,742
(C2xDic3).117D4 = D6:3Q16φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).117D4192,747
(C2xDic3).118D4 = C24.28D4φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).118D4192,750
(C2xDic3).119D4 = C2xC23.11D6φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).119D4192,1050
(C2xDic3).120D4 = C2xC12:Q8φ: D4/C4C2 ⊆ Out C2xDic3192(C2xDic3).120D4192,1056
(C2xDic3).121D4 = C2xS3xD8φ: D4/C4C2 ⊆ Out C2xDic348(C2xDic3).121D4192,1313
(C2xDic3).122D4 = C2xS3xSD16φ: D4/C4C2 ⊆ Out C2xDic348(C2xDic3).122D4192,1317
(C2xDic3).123D4 = C2xS3xQ16φ: D4/C4C2 ⊆ Out C2xDic396(C2xDic3).123D4192,1322
(C2xDic3).124D4 = S3xC4oD8φ: D4/C4C2 ⊆ Out C2xDic3484(C2xDic3).124D4192,1326
(C2xDic3).125D4 = (C2xC12):Q8φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).125D4192,205
(C2xDic3).126D4 = C6.(C4xQ8)φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).126D4192,206
(C2xDic3).127D4 = C6.(C4xD4)φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).127D4192,211
(C2xDic3).128D4 = C2.(C4xDic6)φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).128D4192,213
(C2xDic3).129D4 = Dic3:C4:C4φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).129D4192,214
(C2xDic3).130D4 = D6:(C4:C4)φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).130D4192,226
(C2xDic3).131D4 = D6:C4:C4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).131D4192,227
(C2xDic3).132D4 = C23:C4:5S3φ: D4/C22C2 ⊆ Out C2xDic3488-(C2xDic3).132D4192,299
(C2xDic3).133D4 = D4.S3:C4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).133D4192,316
(C2xDic3).134D4 = Dic3.D8φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).134D4192,318
(C2xDic3).135D4 = D4:Dic6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).135D4192,320
(C2xDic3).136D4 = Dic6:2D4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).136D4192,321
(C2xDic3).137D4 = D4.Dic6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).137D4192,322
(C2xDic3).138D4 = D4.2Dic6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).138D4192,325
(C2xDic3).139D4 = C4:C4:19D6φ: D4/C22C2 ⊆ Out C2xDic348(C2xDic3).139D4192,329
(C2xDic3).140D4 = D4:(C4xS3)φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).140D4192,330
(C2xDic3).141D4 = D6:C8:11C2φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).141D4192,338
(C2xDic3).142D4 = D4:3D12φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).142D4192,340
(C2xDic3).143D4 = D4.D12φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).143D4192,342
(C2xDic3).144D4 = C24:1C4:C2φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).144D4192,343
(C2xDic3).145D4 = D4:S3:C4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).145D4192,344
(C2xDic3).146D4 = C3:Q16:C4φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).146D4192,348
(C2xDic3).147D4 = Q8:2Dic6φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).147D4192,350
(C2xDic3).148D4 = Q8:3Dic6φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).148D4192,352
(C2xDic3).149D4 = Dic3:Q16φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).149D4192,354
(C2xDic3).150D4 = Q8.3Dic6φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).150D4192,355
(C2xDic3).151D4 = Q8.4Dic6φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).151D4192,358
(C2xDic3).152D4 = (S3xQ8):C4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).152D4192,361
(C2xDic3).153D4 = Q8:7(C4xS3)φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).153D4192,362
(C2xDic3).154D4 = Q8.11D12φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).154D4192,367
(C2xDic3).155D4 = Q8:4D12φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).155D4192,369
(C2xDic3).156D4 = D6:C8.C2φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).156D4192,373
(C2xDic3).157D4 = C8:Dic3:C2φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).157D4192,374
(C2xDic3).158D4 = Q8:3(C4xS3)φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).158D4192,376
(C2xDic3).159D4 = S3xC4wrC2φ: D4/C22C2 ⊆ Out C2xDic3244(C2xDic3).159D4192,379
(C2xDic3).160D4 = Dic12:9C4φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).160D4192,412
(C2xDic3).161D4 = Dic6:Q8φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).161D4192,413
(C2xDic3).162D4 = C8:(C4xS3)φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).162D4192,420
(C2xDic3).163D4 = C4.Q8:S3φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).163D4192,425
(C2xDic3).164D4 = C6.(C4oD8)φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).164D4192,427
(C2xDic3).165D4 = D24:9C4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).165D4192,428
(C2xDic3).166D4 = Dic3.Q16φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).166D4192,434
(C2xDic3).167D4 = C8:S3:C4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).167D4192,440
(C2xDic3).168D4 = C2.D8:S3φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).168D4192,444
(C2xDic3).169D4 = C2.D8:7S3φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).169D4192,447
(C2xDic3).170D4 = C24:C2:C4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).170D4192,448
(C2xDic3).171D4 = C24.55D6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).171D4192,501
(C2xDic3).172D4 = C24.15D6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).172D4192,504
(C2xDic3).173D4 = C24.57D6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).173D4192,505
(C2xDic3).174D4 = C24.58D6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).174D4192,509
(C2xDic3).175D4 = Dic3:(C4:C4)φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).175D4192,535
(C2xDic3).176D4 = C4:C4:5Dic3φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).176D4192,539
(C2xDic3).177D4 = D6:C4:6C4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).177D4192,548
(C2xDic3).178D4 = D6:C4:7C4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).178D4192,549
(C2xDic3).179D4 = Dic3:D8φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).179D4192,709
(C2xDic3).180D4 = D8:Dic3φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).180D4192,711
(C2xDic3).181D4 = Dic6:D4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).181D4192,717
(C2xDic3).182D4 = Dic3:3SD16φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).182D4192,721
(C2xDic3).183D4 = SD16:Dic3φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).183D4192,723
(C2xDic3).184D4 = D12:7D4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).184D4192,731
(C2xDic3).185D4 = Dic6.16D4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).185D4192,732
(C2xDic3).186D4 = Dic3:3Q16φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).186D4192,741
(C2xDic3).187D4 = Q16:Dic3φ: D4/C22C2 ⊆ Out C2xDic3192(C2xDic3).187D4192,743
(C2xDic3).188D4 = D12.17D4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).188D4192,746
(C2xDic3).189D4 = C2xDic3.D4φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).189D4192,1040
(C2xDic3).190D4 = C2xD6:Q8φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).190D4192,1067
(C2xDic3).191D4 = C2xD8:S3φ: D4/C22C2 ⊆ Out C2xDic348(C2xDic3).191D4192,1314
(C2xDic3).192D4 = C2xQ8:3D6φ: D4/C22C2 ⊆ Out C2xDic348(C2xDic3).192D4192,1318
(C2xDic3).193D4 = C2xD4.D6φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).193D4192,1319
(C2xDic3).194D4 = C2xQ16:S3φ: D4/C22C2 ⊆ Out C2xDic396(C2xDic3).194D4192,1323
(C2xDic3).195D4 = D8:4D6φ: D4/C22C2 ⊆ Out C2xDic3488-(C2xDic3).195D4192,1332
(C2xDic3).196D4 = D24:C22φ: D4/C22C2 ⊆ Out C2xDic3488+(C2xDic3).196D4192,1336
(C2xDic3).197D4 = Dic3:C42φ: trivial image192(C2xDic3).197D4192,208
(C2xDic3).198D4 = D6:C42φ: trivial image96(C2xDic3).198D4192,225
(C2xDic3).199D4 = Dic3:4D8φ: trivial image96(C2xDic3).199D4192,315
(C2xDic3).200D4 = Dic3:6SD16φ: trivial image96(C2xDic3).200D4192,317
(C2xDic3).201D4 = D4:2S3:C4φ: trivial image96(C2xDic3).201D4192,331
(C2xDic3).202D4 = Dic3:7SD16φ: trivial image96(C2xDic3).202D4192,347
(C2xDic3).203D4 = Dic3:4Q16φ: trivial image192(C2xDic3).203D4192,349
(C2xDic3).204D4 = C4:C4.150D6φ: trivial image96(C2xDic3).204D4192,363
(C2xDic3).205D4 = Dic3:8SD16φ: trivial image96(C2xDic3).205D4192,411
(C2xDic3).206D4 = (S3xC8):C4φ: trivial image96(C2xDic3).206D4192,419
(C2xDic3).207D4 = Dic3:5D8φ: trivial image96(C2xDic3).207D4192,431
(C2xDic3).208D4 = Dic3:5Q16φ: trivial image192(C2xDic3).208D4192,432
(C2xDic3).209D4 = C8.27(C4xS3)φ: trivial image96(C2xDic3).209D4192,439
(C2xDic3).210D4 = Dic3xC22:C4φ: trivial image96(C2xDic3).210D4192,500
(C2xDic3).211D4 = Dic3xC4:C4φ: trivial image192(C2xDic3).211D4192,533
(C2xDic3).212D4 = Dic3xD8φ: trivial image96(C2xDic3).212D4192,708
(C2xDic3).213D4 = Dic3xSD16φ: trivial image96(C2xDic3).213D4192,720
(C2xDic3).214D4 = Dic3xQ16φ: trivial image192(C2xDic3).214D4192,740
(C2xDic3).215D4 = C2xD8:3S3φ: trivial image96(C2xDic3).215D4192,1315
(C2xDic3).216D4 = C2xQ8.7D6φ: trivial image96(C2xDic3).216D4192,1320
(C2xDic3).217D4 = C2xD24:C2φ: trivial image96(C2xDic3).217D4192,1324

׿
x
:
Z
F
o
wr
Q
<