Copied to
clipboard

?

G = Dic1010D4order 320 = 26·5

3rd semidirect product of Dic10 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1010D4, C42.142D10, C10.912- (1+4), C4.71(D4×D5), (C4×D20)⋊44C2, C55(Q85D4), C20.64(C2×D4), C202D434C2, C4.4D411D5, D1015(C4○D4), D10⋊D441C2, D103Q829C2, (C4×Dic10)⋊45C2, (C2×D4).174D10, (C2×C20).81C23, (C2×Q8).137D10, C22⋊C4.73D10, Dic5.52(C2×D4), C10.91(C22×D4), Dic54D430C2, (C4×C20).186C22, (C2×C10).221C24, C23.43(C22×D5), Dic5.5D440C2, (C2×D20).231C22, (D4×C10).156C22, C4⋊Dic5.377C22, (C22×C10).51C23, (Q8×C10).127C22, C22.242(C23×D5), Dic5.14D441C2, C23.D5.55C22, (C2×Dic5).263C23, (C4×Dic5).234C22, (C22×D5).226C23, C2.52(D4.10D10), D10⋊C4.135C22, (C2×Dic10).305C22, C10.D4.121C22, (C22×Dic5).143C22, (C2×Q8×D5)⋊11C2, C2.64(C2×D4×D5), C2.77(D5×C4○D4), (C2×D42D5)⋊19C2, C10.188(C2×C4○D4), (C5×C4.4D4)⋊13C2, (C2×C4×D5).130C22, (C2×C4).196(C22×D5), (C2×C5⋊D4).60C22, (C5×C22⋊C4).65C22, SmallGroup(320,1349)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1010D4
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q8×D5 — Dic1010D4
C5C2×C10 — Dic1010D4

Subgroups: 1046 in 290 conjugacy classes, 105 normal (43 characteristic)
C1, C2 [×3], C2 [×5], C4 [×2], C4 [×12], C22, C22 [×13], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×18], D4 [×12], Q8 [×10], C23 [×2], C23 [×2], D5 [×3], C10 [×3], C10 [×2], C42, C42 [×2], C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×6], C22×C4 [×6], C2×D4, C2×D4 [×5], C2×Q8, C2×Q8 [×7], C4○D4 [×4], Dic5 [×4], Dic5 [×4], C20 [×2], C20 [×4], D10 [×2], D10 [×5], C2×C10, C2×C10 [×6], C4×D4 [×3], C4×Q8, C4⋊D4 [×3], C22⋊Q8 [×3], C4.4D4, C4.4D4 [×2], C22×Q8, C2×C4○D4, Dic10 [×4], Dic10 [×4], C4×D5 [×8], D20 [×2], C2×Dic5 [×2], C2×Dic5 [×4], C2×Dic5 [×4], C5⋊D4 [×8], C2×C20 [×3], C2×C20 [×2], C5×D4 [×2], C5×Q8 [×2], C22×D5 [×2], C22×C10 [×2], Q85D4, C4×Dic5 [×2], C10.D4 [×4], C4⋊Dic5 [×2], D10⋊C4 [×2], D10⋊C4 [×2], C23.D5 [×2], C4×C20, C5×C22⋊C4 [×4], C2×Dic10, C2×Dic10 [×2], C2×C4×D5 [×2], C2×C4×D5 [×2], C2×D20, D42D5 [×4], Q8×D5 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×4], D4×C10, Q8×C10, C4×Dic10, C4×D20, Dic5.14D4 [×2], Dic54D4 [×2], D10⋊D4 [×2], Dic5.5D4 [×2], C202D4, D103Q8, C5×C4.4D4, C2×D42D5, C2×Q8×D5, Dic1010D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2- (1+4), C22×D5 [×7], Q85D4, D4×D5 [×2], C23×D5, C2×D4×D5, D5×C4○D4, D4.10D10, Dic1010D4

Generators and relations
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, ac=ca, dad=a9, cbc-1=dbd=a10b, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 149 11 159)(2 148 12 158)(3 147 13 157)(4 146 14 156)(5 145 15 155)(6 144 16 154)(7 143 17 153)(8 142 18 152)(9 141 19 151)(10 160 20 150)(21 121 31 131)(22 140 32 130)(23 139 33 129)(24 138 34 128)(25 137 35 127)(26 136 36 126)(27 135 37 125)(28 134 38 124)(29 133 39 123)(30 132 40 122)(41 85 51 95)(42 84 52 94)(43 83 53 93)(44 82 54 92)(45 81 55 91)(46 100 56 90)(47 99 57 89)(48 98 58 88)(49 97 59 87)(50 96 60 86)(61 115 71 105)(62 114 72 104)(63 113 73 103)(64 112 74 102)(65 111 75 101)(66 110 76 120)(67 109 77 119)(68 108 78 118)(69 107 79 117)(70 106 80 116)
(1 48 112 139)(2 49 113 140)(3 50 114 121)(4 51 115 122)(5 52 116 123)(6 53 117 124)(7 54 118 125)(8 55 119 126)(9 56 120 127)(10 57 101 128)(11 58 102 129)(12 59 103 130)(13 60 104 131)(14 41 105 132)(15 42 106 133)(16 43 107 134)(17 44 108 135)(18 45 109 136)(19 46 110 137)(20 47 111 138)(21 147 86 72)(22 148 87 73)(23 149 88 74)(24 150 89 75)(25 151 90 76)(26 152 91 77)(27 153 92 78)(28 154 93 79)(29 155 94 80)(30 156 95 61)(31 157 96 62)(32 158 97 63)(33 159 98 64)(34 160 99 65)(35 141 100 66)(36 142 81 67)(37 143 82 68)(38 144 83 69)(39 145 84 70)(40 146 85 71)
(1 112)(2 101)(3 110)(4 119)(5 108)(6 117)(7 106)(8 115)(9 104)(10 113)(11 102)(12 111)(13 120)(14 109)(15 118)(16 107)(17 116)(18 105)(19 114)(20 103)(21 35)(22 24)(23 33)(25 31)(26 40)(27 29)(28 38)(30 36)(32 34)(37 39)(41 45)(42 54)(44 52)(46 50)(47 59)(49 57)(51 55)(56 60)(61 142)(62 151)(63 160)(64 149)(65 158)(66 147)(67 156)(68 145)(69 154)(70 143)(71 152)(72 141)(73 150)(74 159)(75 148)(76 157)(77 146)(78 155)(79 144)(80 153)(81 95)(82 84)(83 93)(85 91)(86 100)(87 89)(88 98)(90 96)(92 94)(97 99)(121 137)(122 126)(123 135)(125 133)(127 131)(128 140)(130 138)(132 136)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,149,11,159)(2,148,12,158)(3,147,13,157)(4,146,14,156)(5,145,15,155)(6,144,16,154)(7,143,17,153)(8,142,18,152)(9,141,19,151)(10,160,20,150)(21,121,31,131)(22,140,32,130)(23,139,33,129)(24,138,34,128)(25,137,35,127)(26,136,36,126)(27,135,37,125)(28,134,38,124)(29,133,39,123)(30,132,40,122)(41,85,51,95)(42,84,52,94)(43,83,53,93)(44,82,54,92)(45,81,55,91)(46,100,56,90)(47,99,57,89)(48,98,58,88)(49,97,59,87)(50,96,60,86)(61,115,71,105)(62,114,72,104)(63,113,73,103)(64,112,74,102)(65,111,75,101)(66,110,76,120)(67,109,77,119)(68,108,78,118)(69,107,79,117)(70,106,80,116), (1,48,112,139)(2,49,113,140)(3,50,114,121)(4,51,115,122)(5,52,116,123)(6,53,117,124)(7,54,118,125)(8,55,119,126)(9,56,120,127)(10,57,101,128)(11,58,102,129)(12,59,103,130)(13,60,104,131)(14,41,105,132)(15,42,106,133)(16,43,107,134)(17,44,108,135)(18,45,109,136)(19,46,110,137)(20,47,111,138)(21,147,86,72)(22,148,87,73)(23,149,88,74)(24,150,89,75)(25,151,90,76)(26,152,91,77)(27,153,92,78)(28,154,93,79)(29,155,94,80)(30,156,95,61)(31,157,96,62)(32,158,97,63)(33,159,98,64)(34,160,99,65)(35,141,100,66)(36,142,81,67)(37,143,82,68)(38,144,83,69)(39,145,84,70)(40,146,85,71), (1,112)(2,101)(3,110)(4,119)(5,108)(6,117)(7,106)(8,115)(9,104)(10,113)(11,102)(12,111)(13,120)(14,109)(15,118)(16,107)(17,116)(18,105)(19,114)(20,103)(21,35)(22,24)(23,33)(25,31)(26,40)(27,29)(28,38)(30,36)(32,34)(37,39)(41,45)(42,54)(44,52)(46,50)(47,59)(49,57)(51,55)(56,60)(61,142)(62,151)(63,160)(64,149)(65,158)(66,147)(67,156)(68,145)(69,154)(70,143)(71,152)(72,141)(73,150)(74,159)(75,148)(76,157)(77,146)(78,155)(79,144)(80,153)(81,95)(82,84)(83,93)(85,91)(86,100)(87,89)(88,98)(90,96)(92,94)(97,99)(121,137)(122,126)(123,135)(125,133)(127,131)(128,140)(130,138)(132,136)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,149,11,159)(2,148,12,158)(3,147,13,157)(4,146,14,156)(5,145,15,155)(6,144,16,154)(7,143,17,153)(8,142,18,152)(9,141,19,151)(10,160,20,150)(21,121,31,131)(22,140,32,130)(23,139,33,129)(24,138,34,128)(25,137,35,127)(26,136,36,126)(27,135,37,125)(28,134,38,124)(29,133,39,123)(30,132,40,122)(41,85,51,95)(42,84,52,94)(43,83,53,93)(44,82,54,92)(45,81,55,91)(46,100,56,90)(47,99,57,89)(48,98,58,88)(49,97,59,87)(50,96,60,86)(61,115,71,105)(62,114,72,104)(63,113,73,103)(64,112,74,102)(65,111,75,101)(66,110,76,120)(67,109,77,119)(68,108,78,118)(69,107,79,117)(70,106,80,116), (1,48,112,139)(2,49,113,140)(3,50,114,121)(4,51,115,122)(5,52,116,123)(6,53,117,124)(7,54,118,125)(8,55,119,126)(9,56,120,127)(10,57,101,128)(11,58,102,129)(12,59,103,130)(13,60,104,131)(14,41,105,132)(15,42,106,133)(16,43,107,134)(17,44,108,135)(18,45,109,136)(19,46,110,137)(20,47,111,138)(21,147,86,72)(22,148,87,73)(23,149,88,74)(24,150,89,75)(25,151,90,76)(26,152,91,77)(27,153,92,78)(28,154,93,79)(29,155,94,80)(30,156,95,61)(31,157,96,62)(32,158,97,63)(33,159,98,64)(34,160,99,65)(35,141,100,66)(36,142,81,67)(37,143,82,68)(38,144,83,69)(39,145,84,70)(40,146,85,71), (1,112)(2,101)(3,110)(4,119)(5,108)(6,117)(7,106)(8,115)(9,104)(10,113)(11,102)(12,111)(13,120)(14,109)(15,118)(16,107)(17,116)(18,105)(19,114)(20,103)(21,35)(22,24)(23,33)(25,31)(26,40)(27,29)(28,38)(30,36)(32,34)(37,39)(41,45)(42,54)(44,52)(46,50)(47,59)(49,57)(51,55)(56,60)(61,142)(62,151)(63,160)(64,149)(65,158)(66,147)(67,156)(68,145)(69,154)(70,143)(71,152)(72,141)(73,150)(74,159)(75,148)(76,157)(77,146)(78,155)(79,144)(80,153)(81,95)(82,84)(83,93)(85,91)(86,100)(87,89)(88,98)(90,96)(92,94)(97,99)(121,137)(122,126)(123,135)(125,133)(127,131)(128,140)(130,138)(132,136) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,149,11,159),(2,148,12,158),(3,147,13,157),(4,146,14,156),(5,145,15,155),(6,144,16,154),(7,143,17,153),(8,142,18,152),(9,141,19,151),(10,160,20,150),(21,121,31,131),(22,140,32,130),(23,139,33,129),(24,138,34,128),(25,137,35,127),(26,136,36,126),(27,135,37,125),(28,134,38,124),(29,133,39,123),(30,132,40,122),(41,85,51,95),(42,84,52,94),(43,83,53,93),(44,82,54,92),(45,81,55,91),(46,100,56,90),(47,99,57,89),(48,98,58,88),(49,97,59,87),(50,96,60,86),(61,115,71,105),(62,114,72,104),(63,113,73,103),(64,112,74,102),(65,111,75,101),(66,110,76,120),(67,109,77,119),(68,108,78,118),(69,107,79,117),(70,106,80,116)], [(1,48,112,139),(2,49,113,140),(3,50,114,121),(4,51,115,122),(5,52,116,123),(6,53,117,124),(7,54,118,125),(8,55,119,126),(9,56,120,127),(10,57,101,128),(11,58,102,129),(12,59,103,130),(13,60,104,131),(14,41,105,132),(15,42,106,133),(16,43,107,134),(17,44,108,135),(18,45,109,136),(19,46,110,137),(20,47,111,138),(21,147,86,72),(22,148,87,73),(23,149,88,74),(24,150,89,75),(25,151,90,76),(26,152,91,77),(27,153,92,78),(28,154,93,79),(29,155,94,80),(30,156,95,61),(31,157,96,62),(32,158,97,63),(33,159,98,64),(34,160,99,65),(35,141,100,66),(36,142,81,67),(37,143,82,68),(38,144,83,69),(39,145,84,70),(40,146,85,71)], [(1,112),(2,101),(3,110),(4,119),(5,108),(6,117),(7,106),(8,115),(9,104),(10,113),(11,102),(12,111),(13,120),(14,109),(15,118),(16,107),(17,116),(18,105),(19,114),(20,103),(21,35),(22,24),(23,33),(25,31),(26,40),(27,29),(28,38),(30,36),(32,34),(37,39),(41,45),(42,54),(44,52),(46,50),(47,59),(49,57),(51,55),(56,60),(61,142),(62,151),(63,160),(64,149),(65,158),(66,147),(67,156),(68,145),(69,154),(70,143),(71,152),(72,141),(73,150),(74,159),(75,148),(76,157),(77,146),(78,155),(79,144),(80,153),(81,95),(82,84),(83,93),(85,91),(86,100),(87,89),(88,98),(90,96),(92,94),(97,99),(121,137),(122,126),(123,135),(125,133),(127,131),(128,140),(130,138),(132,136)])

Matrix representation G ⊆ GL6(𝔽41)

7400000
100000
001000
000100
000090
00003232
,
3470000
4070000
0040000
0004000
00004039
000011
,
100000
010000
000100
0040000
000010
00004040
,
3470000
4070000
0040000
000100
000010
00004040

G:=sub<GL(6,GF(41))| [7,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,32,0,0,0,0,0,32],[34,40,0,0,0,0,7,7,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[34,40,0,0,0,0,7,7,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,40,0,0,0,0,0,40] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H···4M4N4O4P5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order12222222244444444···44445510···101010101020···2020202020
size111144101020222244410···10202020222···288884···48888

53 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D102- (1+4)D4×D5D5×C4○D4D4.10D10
kernelDic1010D4C4×Dic10C4×D20Dic5.14D4Dic54D4D10⋊D4Dic5.5D4C202D4D103Q8C5×C4.4D4C2×D42D5C2×Q8×D5Dic10C4.4D4D10C42C22⋊C4C2×D4C2×Q8C10C4C2C2
# reps11122221111142428221444

In GAP, Magma, Sage, TeX

Dic_{10}\rtimes_{10}D_4
% in TeX

G:=Group("Dic10:10D4");
// GroupNames label

G:=SmallGroup(320,1349);
// by ID

G=gap.SmallGroup(320,1349);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,100,1571,297,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^9,c*b*c^-1=d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽