Copied to
clipboard

?

G = Dic1011D4order 320 = 26·5

4th semidirect product of Dic10 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1011D4, C42.167D10, C10.782+ (1+4), C41D47D5, C4.72(D4×D5), (C4×D20)⋊50C2, C205(C4○D4), C54(Q86D4), C20.67(C2×D4), C202D437C2, C41(D42D5), C20⋊D427C2, (D4×Dic5)⋊35C2, (C4×Dic10)⋊51C2, (C2×D4).115D10, Dic5.53(C2×D4), C10.96(C22×D4), Dic5⋊D437C2, (C2×C10).262C24, (C2×C20).636C23, (C4×C20).204C22, C2.82(D46D10), C23.68(C22×D5), (C2×D20).278C22, (D4×C10).214C22, C4⋊Dic5.381C22, (C22×C10).76C23, C22.283(C23×D5), C23.D5.73C22, (C2×Dic5).279C23, (C4×Dic5).163C22, (C22×D5).116C23, D10⋊C4.149C22, (C2×Dic10).309C22, C10.D4.164C22, (C22×Dic5).158C22, C2.69(C2×D4×D5), (C5×C41D4)⋊9C2, C10.97(C2×C4○D4), (C2×D42D5)⋊22C2, C2.61(C2×D42D5), (C2×C4×D5).148C22, (C2×C4).598(C22×D5), (C2×C5⋊D4).78C22, SmallGroup(320,1390)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1011D4
C1C5C10C2×C10C22×D5C2×D20C4×D20 — Dic1011D4
C5C2×C10 — Dic1011D4

Subgroups: 1158 in 312 conjugacy classes, 107 normal (27 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×9], C22, C22 [×18], C5, C2×C4 [×3], C2×C4 [×18], D4 [×24], Q8 [×4], C23 [×4], C23 [×2], D5 [×2], C10 [×3], C10 [×4], C42, C42 [×2], C22⋊C4 [×6], C4⋊C4 [×4], C22×C4 [×6], C2×D4 [×6], C2×D4 [×9], C2×Q8, C4○D4 [×8], Dic5 [×4], Dic5 [×4], C20 [×4], C20, D10 [×6], C2×C10, C2×C10 [×12], C4×D4 [×3], C4×Q8, C4⋊D4 [×6], C41D4, C41D4 [×2], C2×C4○D4 [×2], Dic10 [×4], C4×D5 [×4], D20 [×2], C2×Dic5 [×6], C2×Dic5 [×8], C5⋊D4 [×12], C2×C20 [×3], C5×D4 [×10], C22×D5 [×2], C22×C10 [×4], Q86D4, C4×Dic5 [×2], C10.D4 [×2], C4⋊Dic5 [×2], D10⋊C4 [×2], C23.D5 [×4], C4×C20, C2×Dic10, C2×C4×D5 [×2], C2×D20, D42D5 [×8], C22×Dic5 [×4], C2×C5⋊D4 [×8], D4×C10 [×6], C4×Dic10, C4×D20, D4×Dic5 [×2], C202D4 [×2], Dic5⋊D4 [×4], C20⋊D4 [×2], C5×C41D4, C2×D42D5 [×2], Dic1011D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2+ (1+4), C22×D5 [×7], Q86D4, D4×D5 [×2], D42D5 [×2], C23×D5, C2×D4×D5, C2×D42D5, D46D10, Dic1011D4

Generators and relations
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, ac=ca, dad=a11, bc=cb, dbd=a10b, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 50 11 60)(2 49 12 59)(3 48 13 58)(4 47 14 57)(5 46 15 56)(6 45 16 55)(7 44 17 54)(8 43 18 53)(9 42 19 52)(10 41 20 51)(21 67 31 77)(22 66 32 76)(23 65 33 75)(24 64 34 74)(25 63 35 73)(26 62 36 72)(27 61 37 71)(28 80 38 70)(29 79 39 69)(30 78 40 68)(81 146 91 156)(82 145 92 155)(83 144 93 154)(84 143 94 153)(85 142 95 152)(86 141 96 151)(87 160 97 150)(88 159 98 149)(89 158 99 148)(90 157 100 147)(101 134 111 124)(102 133 112 123)(103 132 113 122)(104 131 114 121)(105 130 115 140)(106 129 116 139)(107 128 117 138)(108 127 118 137)(109 126 119 136)(110 125 120 135)
(1 82 36 116)(2 83 37 117)(3 84 38 118)(4 85 39 119)(5 86 40 120)(6 87 21 101)(7 88 22 102)(8 89 23 103)(9 90 24 104)(10 91 25 105)(11 92 26 106)(12 93 27 107)(13 94 28 108)(14 95 29 109)(15 96 30 110)(16 97 31 111)(17 98 32 112)(18 99 33 113)(19 100 34 114)(20 81 35 115)(41 156 63 130)(42 157 64 131)(43 158 65 132)(44 159 66 133)(45 160 67 134)(46 141 68 135)(47 142 69 136)(48 143 70 137)(49 144 71 138)(50 145 72 139)(51 146 73 140)(52 147 74 121)(53 148 75 122)(54 149 76 123)(55 150 77 124)(56 151 78 125)(57 152 79 126)(58 153 80 127)(59 154 61 128)(60 155 62 129)
(1 139)(2 130)(3 121)(4 132)(5 123)(6 134)(7 125)(8 136)(9 127)(10 138)(11 129)(12 140)(13 131)(14 122)(15 133)(16 124)(17 135)(18 126)(19 137)(20 128)(21 160)(22 151)(23 142)(24 153)(25 144)(26 155)(27 146)(28 157)(29 148)(30 159)(31 150)(32 141)(33 152)(34 143)(35 154)(36 145)(37 156)(38 147)(39 158)(40 149)(41 117)(42 108)(43 119)(44 110)(45 101)(46 112)(47 103)(48 114)(49 105)(50 116)(51 107)(52 118)(53 109)(54 120)(55 111)(56 102)(57 113)(58 104)(59 115)(60 106)(61 81)(62 92)(63 83)(64 94)(65 85)(66 96)(67 87)(68 98)(69 89)(70 100)(71 91)(72 82)(73 93)(74 84)(75 95)(76 86)(77 97)(78 88)(79 99)(80 90)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,50,11,60)(2,49,12,59)(3,48,13,58)(4,47,14,57)(5,46,15,56)(6,45,16,55)(7,44,17,54)(8,43,18,53)(9,42,19,52)(10,41,20,51)(21,67,31,77)(22,66,32,76)(23,65,33,75)(24,64,34,74)(25,63,35,73)(26,62,36,72)(27,61,37,71)(28,80,38,70)(29,79,39,69)(30,78,40,68)(81,146,91,156)(82,145,92,155)(83,144,93,154)(84,143,94,153)(85,142,95,152)(86,141,96,151)(87,160,97,150)(88,159,98,149)(89,158,99,148)(90,157,100,147)(101,134,111,124)(102,133,112,123)(103,132,113,122)(104,131,114,121)(105,130,115,140)(106,129,116,139)(107,128,117,138)(108,127,118,137)(109,126,119,136)(110,125,120,135), (1,82,36,116)(2,83,37,117)(3,84,38,118)(4,85,39,119)(5,86,40,120)(6,87,21,101)(7,88,22,102)(8,89,23,103)(9,90,24,104)(10,91,25,105)(11,92,26,106)(12,93,27,107)(13,94,28,108)(14,95,29,109)(15,96,30,110)(16,97,31,111)(17,98,32,112)(18,99,33,113)(19,100,34,114)(20,81,35,115)(41,156,63,130)(42,157,64,131)(43,158,65,132)(44,159,66,133)(45,160,67,134)(46,141,68,135)(47,142,69,136)(48,143,70,137)(49,144,71,138)(50,145,72,139)(51,146,73,140)(52,147,74,121)(53,148,75,122)(54,149,76,123)(55,150,77,124)(56,151,78,125)(57,152,79,126)(58,153,80,127)(59,154,61,128)(60,155,62,129), (1,139)(2,130)(3,121)(4,132)(5,123)(6,134)(7,125)(8,136)(9,127)(10,138)(11,129)(12,140)(13,131)(14,122)(15,133)(16,124)(17,135)(18,126)(19,137)(20,128)(21,160)(22,151)(23,142)(24,153)(25,144)(26,155)(27,146)(28,157)(29,148)(30,159)(31,150)(32,141)(33,152)(34,143)(35,154)(36,145)(37,156)(38,147)(39,158)(40,149)(41,117)(42,108)(43,119)(44,110)(45,101)(46,112)(47,103)(48,114)(49,105)(50,116)(51,107)(52,118)(53,109)(54,120)(55,111)(56,102)(57,113)(58,104)(59,115)(60,106)(61,81)(62,92)(63,83)(64,94)(65,85)(66,96)(67,87)(68,98)(69,89)(70,100)(71,91)(72,82)(73,93)(74,84)(75,95)(76,86)(77,97)(78,88)(79,99)(80,90)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,50,11,60)(2,49,12,59)(3,48,13,58)(4,47,14,57)(5,46,15,56)(6,45,16,55)(7,44,17,54)(8,43,18,53)(9,42,19,52)(10,41,20,51)(21,67,31,77)(22,66,32,76)(23,65,33,75)(24,64,34,74)(25,63,35,73)(26,62,36,72)(27,61,37,71)(28,80,38,70)(29,79,39,69)(30,78,40,68)(81,146,91,156)(82,145,92,155)(83,144,93,154)(84,143,94,153)(85,142,95,152)(86,141,96,151)(87,160,97,150)(88,159,98,149)(89,158,99,148)(90,157,100,147)(101,134,111,124)(102,133,112,123)(103,132,113,122)(104,131,114,121)(105,130,115,140)(106,129,116,139)(107,128,117,138)(108,127,118,137)(109,126,119,136)(110,125,120,135), (1,82,36,116)(2,83,37,117)(3,84,38,118)(4,85,39,119)(5,86,40,120)(6,87,21,101)(7,88,22,102)(8,89,23,103)(9,90,24,104)(10,91,25,105)(11,92,26,106)(12,93,27,107)(13,94,28,108)(14,95,29,109)(15,96,30,110)(16,97,31,111)(17,98,32,112)(18,99,33,113)(19,100,34,114)(20,81,35,115)(41,156,63,130)(42,157,64,131)(43,158,65,132)(44,159,66,133)(45,160,67,134)(46,141,68,135)(47,142,69,136)(48,143,70,137)(49,144,71,138)(50,145,72,139)(51,146,73,140)(52,147,74,121)(53,148,75,122)(54,149,76,123)(55,150,77,124)(56,151,78,125)(57,152,79,126)(58,153,80,127)(59,154,61,128)(60,155,62,129), (1,139)(2,130)(3,121)(4,132)(5,123)(6,134)(7,125)(8,136)(9,127)(10,138)(11,129)(12,140)(13,131)(14,122)(15,133)(16,124)(17,135)(18,126)(19,137)(20,128)(21,160)(22,151)(23,142)(24,153)(25,144)(26,155)(27,146)(28,157)(29,148)(30,159)(31,150)(32,141)(33,152)(34,143)(35,154)(36,145)(37,156)(38,147)(39,158)(40,149)(41,117)(42,108)(43,119)(44,110)(45,101)(46,112)(47,103)(48,114)(49,105)(50,116)(51,107)(52,118)(53,109)(54,120)(55,111)(56,102)(57,113)(58,104)(59,115)(60,106)(61,81)(62,92)(63,83)(64,94)(65,85)(66,96)(67,87)(68,98)(69,89)(70,100)(71,91)(72,82)(73,93)(74,84)(75,95)(76,86)(77,97)(78,88)(79,99)(80,90) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,50,11,60),(2,49,12,59),(3,48,13,58),(4,47,14,57),(5,46,15,56),(6,45,16,55),(7,44,17,54),(8,43,18,53),(9,42,19,52),(10,41,20,51),(21,67,31,77),(22,66,32,76),(23,65,33,75),(24,64,34,74),(25,63,35,73),(26,62,36,72),(27,61,37,71),(28,80,38,70),(29,79,39,69),(30,78,40,68),(81,146,91,156),(82,145,92,155),(83,144,93,154),(84,143,94,153),(85,142,95,152),(86,141,96,151),(87,160,97,150),(88,159,98,149),(89,158,99,148),(90,157,100,147),(101,134,111,124),(102,133,112,123),(103,132,113,122),(104,131,114,121),(105,130,115,140),(106,129,116,139),(107,128,117,138),(108,127,118,137),(109,126,119,136),(110,125,120,135)], [(1,82,36,116),(2,83,37,117),(3,84,38,118),(4,85,39,119),(5,86,40,120),(6,87,21,101),(7,88,22,102),(8,89,23,103),(9,90,24,104),(10,91,25,105),(11,92,26,106),(12,93,27,107),(13,94,28,108),(14,95,29,109),(15,96,30,110),(16,97,31,111),(17,98,32,112),(18,99,33,113),(19,100,34,114),(20,81,35,115),(41,156,63,130),(42,157,64,131),(43,158,65,132),(44,159,66,133),(45,160,67,134),(46,141,68,135),(47,142,69,136),(48,143,70,137),(49,144,71,138),(50,145,72,139),(51,146,73,140),(52,147,74,121),(53,148,75,122),(54,149,76,123),(55,150,77,124),(56,151,78,125),(57,152,79,126),(58,153,80,127),(59,154,61,128),(60,155,62,129)], [(1,139),(2,130),(3,121),(4,132),(5,123),(6,134),(7,125),(8,136),(9,127),(10,138),(11,129),(12,140),(13,131),(14,122),(15,133),(16,124),(17,135),(18,126),(19,137),(20,128),(21,160),(22,151),(23,142),(24,153),(25,144),(26,155),(27,146),(28,157),(29,148),(30,159),(31,150),(32,141),(33,152),(34,143),(35,154),(36,145),(37,156),(38,147),(39,158),(40,149),(41,117),(42,108),(43,119),(44,110),(45,101),(46,112),(47,103),(48,114),(49,105),(50,116),(51,107),(52,118),(53,109),(54,120),(55,111),(56,102),(57,113),(58,104),(59,115),(60,106),(61,81),(62,92),(63,83),(64,94),(65,85),(66,96),(67,87),(68,98),(69,89),(70,100),(71,91),(72,82),(73,93),(74,84),(75,95),(76,86),(77,97),(78,88),(79,99),(80,90)])

Matrix representation G ⊆ GL6(𝔽41)

1400000
3660000
0032000
0032900
0000400
0000040
,
35400000
3560000
0040200
0040100
0000400
0000040
,
4000000
0400000
0040000
0004000
0000405
0000161
,
100000
010000
0040200
000100
0000136
0000040

G:=sub<GL(6,GF(41))| [1,36,0,0,0,0,40,6,0,0,0,0,0,0,32,32,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[35,35,0,0,0,0,40,6,0,0,0,0,0,0,40,40,0,0,0,0,2,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,16,0,0,0,0,5,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,36,40] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F···4M4N4O5A5B10A···10F10G···10N20A···20L
order1222222222444444···4445510···1010···1020···20
size1111444420202222410···102020222···28···84···4

53 irreducible representations

dim111111111222224444
type+++++++++++++++-
imageC1C2C2C2C2C2C2C2C2D4D5C4○D4D10D102+ (1+4)D4×D5D42D5D46D10
kernelDic1011D4C4×Dic10C4×D20D4×Dic5C202D4Dic5⋊D4C20⋊D4C5×C41D4C2×D42D5Dic10C41D4C20C42C2×D4C10C4C4C2
# reps1112242124242121444

In GAP, Magma, Sage, TeX

Dic_{10}\rtimes_{11}D_4
% in TeX

G:=Group("Dic10:11D4");
// GroupNames label

G:=SmallGroup(320,1390);
// by ID

G=gap.SmallGroup(320,1390);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,232,100,675,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^11,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽