direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×SD16⋊3D7, C28.8C24, SD16⋊12D14, C56.44C23, D28.4C23, Dic14.4C23, C4.45(D4×D7), C14⋊3(C4○D8), (C4×D7).29D4, C28.83(C2×D4), C7⋊C8.21C23, C4.8(C23×D7), D4⋊D7⋊11C22, (C2×SD16)⋊16D7, D14.10(C2×D4), (C2×C8).265D14, (C8×D7)⋊18C22, (C7×D4).6C23, D4.6(C22×D7), C7⋊Q16⋊7C22, C8.41(C22×D7), (C14×SD16)⋊11C2, (C2×D4).184D14, Q8.2(C22×D7), (C7×Q8).2C23, D4⋊2D7⋊7C22, C56⋊C2⋊18C22, (C2×Q8).151D14, Dic7.69(C2×D4), Q8⋊2D7⋊6C22, (C22×D7).62D4, (C4×D7).26C23, C22.141(D4×D7), (C2×C56).166C22, (C2×C28).525C23, (C2×Dic7).216D4, (C7×SD16)⋊13C22, C14.109(C22×D4), (D4×C14).166C22, (C2×D28).178C22, (Q8×C14).148C22, (C2×Dic14).197C22, C7⋊3(C2×C4○D8), (D7×C2×C8)⋊10C2, C2.82(C2×D4×D7), (C2×D4⋊D7)⋊28C2, (C2×C56⋊C2)⋊32C2, (C2×C7⋊Q16)⋊26C2, (C2×D4⋊2D7)⋊25C2, (C2×Q8⋊2D7)⋊15C2, (C2×C14).398(C2×D4), (C2×C7⋊C8).284C22, (C2×C4×D7).258C22, (C2×C4).614(C22×D7), SmallGroup(448,1214)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1284 in 266 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×2], C4 [×6], C22, C22 [×12], C7, C8 [×2], C8 [×2], C2×C4, C2×C4 [×15], D4 [×2], D4 [×12], Q8 [×2], Q8 [×4], C23 [×3], D7 [×4], C14, C14 [×2], C14 [×2], C2×C8, C2×C8 [×5], D8 [×4], SD16 [×4], SD16 [×4], Q16 [×4], C22×C4 [×3], C2×D4, C2×D4 [×3], C2×Q8, C2×Q8, C4○D4 [×12], Dic7 [×2], Dic7 [×2], C28 [×2], C28 [×2], D14 [×2], D14 [×6], C2×C14, C2×C14 [×4], C22×C8, C2×D8, C2×SD16, C2×SD16, C2×Q16, C4○D8 [×8], C2×C4○D4 [×2], C7⋊C8 [×2], C56 [×2], Dic14 [×2], Dic14, C4×D7 [×4], C4×D7 [×4], D28 [×2], D28 [×5], C2×Dic7, C2×Dic7 [×5], C7⋊D4 [×4], C2×C28, C2×C28, C7×D4 [×2], C7×D4, C7×Q8 [×2], C7×Q8, C22×D7, C22×D7, C22×C14, C2×C4○D8, C8×D7 [×4], C56⋊C2 [×4], C2×C7⋊C8, D4⋊D7 [×4], C7⋊Q16 [×4], C2×C56, C7×SD16 [×4], C2×Dic14, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, D4⋊2D7 [×4], D4⋊2D7 [×2], Q8⋊2D7 [×4], Q8⋊2D7 [×2], C22×Dic7, C2×C7⋊D4, D4×C14, Q8×C14, D7×C2×C8, C2×C56⋊C2, SD16⋊3D7 [×8], C2×D4⋊D7, C2×C7⋊Q16, C14×SD16, C2×D4⋊2D7, C2×Q8⋊2D7, C2×SD16⋊3D7
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C4○D8 [×2], C22×D4, C22×D7 [×7], C2×C4○D8, D4×D7 [×2], C23×D7, SD16⋊3D7 [×2], C2×D4×D7, C2×SD16⋊3D7
Generators and relations
G = < a,b,c,d,e | a2=b8=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b3, bd=db, be=eb, cd=dc, ece=b4c, ede=d-1 >
(1 196)(2 197)(3 198)(4 199)(5 200)(6 193)(7 194)(8 195)(9 173)(10 174)(11 175)(12 176)(13 169)(14 170)(15 171)(16 172)(17 167)(18 168)(19 161)(20 162)(21 163)(22 164)(23 165)(24 166)(25 221)(26 222)(27 223)(28 224)(29 217)(30 218)(31 219)(32 220)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 113)(41 129)(42 130)(43 131)(44 132)(45 133)(46 134)(47 135)(48 136)(49 215)(50 216)(51 209)(52 210)(53 211)(54 212)(55 213)(56 214)(57 201)(58 202)(59 203)(60 204)(61 205)(62 206)(63 207)(64 208)(65 125)(66 126)(67 127)(68 128)(69 121)(70 122)(71 123)(72 124)(73 141)(74 142)(75 143)(76 144)(77 137)(78 138)(79 139)(80 140)(81 146)(82 147)(83 148)(84 149)(85 150)(86 151)(87 152)(88 145)(89 183)(90 184)(91 177)(92 178)(93 179)(94 180)(95 181)(96 182)(97 155)(98 156)(99 157)(100 158)(101 159)(102 160)(103 153)(104 154)(105 191)(106 192)(107 185)(108 186)(109 187)(110 188)(111 189)(112 190)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208)(209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224)
(1 218)(2 221)(3 224)(4 219)(5 222)(6 217)(7 220)(8 223)(9 63)(10 58)(11 61)(12 64)(13 59)(14 62)(15 57)(16 60)(17 51)(18 54)(19 49)(20 52)(21 55)(22 50)(23 53)(24 56)(25 197)(26 200)(27 195)(28 198)(29 193)(30 196)(31 199)(32 194)(33 84)(34 87)(35 82)(36 85)(37 88)(38 83)(39 86)(40 81)(41 101)(42 104)(43 99)(44 102)(45 97)(46 100)(47 103)(48 98)(65 95)(66 90)(67 93)(68 96)(69 91)(70 94)(71 89)(72 92)(73 107)(74 110)(75 105)(76 108)(77 111)(78 106)(79 109)(80 112)(113 146)(114 149)(115 152)(116 147)(117 150)(118 145)(119 148)(120 151)(121 177)(122 180)(123 183)(124 178)(125 181)(126 184)(127 179)(128 182)(129 159)(130 154)(131 157)(132 160)(133 155)(134 158)(135 153)(136 156)(137 189)(138 192)(139 187)(140 190)(141 185)(142 188)(143 191)(144 186)(161 215)(162 210)(163 213)(164 216)(165 211)(166 214)(167 209)(168 212)(169 203)(170 206)(171 201)(172 204)(173 207)(174 202)(175 205)(176 208)
(1 40 72 172 161 160 191)(2 33 65 173 162 153 192)(3 34 66 174 163 154 185)(4 35 67 175 164 155 186)(5 36 68 176 165 156 187)(6 37 69 169 166 157 188)(7 38 70 170 167 158 189)(8 39 71 171 168 159 190)(9 20 103 106 197 114 125)(10 21 104 107 198 115 126)(11 22 97 108 199 116 127)(12 23 98 109 200 117 128)(13 24 99 110 193 118 121)(14 17 100 111 194 119 122)(15 18 101 112 195 120 123)(16 19 102 105 196 113 124)(25 149 181 63 52 47 78)(26 150 182 64 53 48 79)(27 151 183 57 54 41 80)(28 152 184 58 55 42 73)(29 145 177 59 56 43 74)(30 146 178 60 49 44 75)(31 147 179 61 50 45 76)(32 148 180 62 51 46 77)(81 92 204 215 132 143 218)(82 93 205 216 133 144 219)(83 94 206 209 134 137 220)(84 95 207 210 135 138 221)(85 96 208 211 136 139 222)(86 89 201 212 129 140 223)(87 90 202 213 130 141 224)(88 91 203 214 131 142 217)
(1 191)(2 192)(3 185)(4 186)(5 187)(6 188)(7 189)(8 190)(17 122)(18 123)(19 124)(20 125)(21 126)(22 127)(23 128)(24 121)(25 74)(26 75)(27 76)(28 77)(29 78)(30 79)(31 80)(32 73)(33 153)(34 154)(35 155)(36 156)(37 157)(38 158)(39 159)(40 160)(41 147)(42 148)(43 149)(44 150)(45 151)(46 152)(47 145)(48 146)(49 182)(50 183)(51 184)(52 177)(53 178)(54 179)(55 180)(56 181)(57 61)(58 62)(59 63)(60 64)(65 162)(66 163)(67 164)(68 165)(69 166)(70 167)(71 168)(72 161)(81 136)(82 129)(83 130)(84 131)(85 132)(86 133)(87 134)(88 135)(89 216)(90 209)(91 210)(92 211)(93 212)(94 213)(95 214)(96 215)(97 116)(98 117)(99 118)(100 119)(101 120)(102 113)(103 114)(104 115)(105 196)(106 197)(107 198)(108 199)(109 200)(110 193)(111 194)(112 195)(137 224)(138 217)(139 218)(140 219)(141 220)(142 221)(143 222)(144 223)(201 205)(202 206)(203 207)(204 208)
G:=sub<Sym(224)| (1,196)(2,197)(3,198)(4,199)(5,200)(6,193)(7,194)(8,195)(9,173)(10,174)(11,175)(12,176)(13,169)(14,170)(15,171)(16,172)(17,167)(18,168)(19,161)(20,162)(21,163)(22,164)(23,165)(24,166)(25,221)(26,222)(27,223)(28,224)(29,217)(30,218)(31,219)(32,220)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,113)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,215)(50,216)(51,209)(52,210)(53,211)(54,212)(55,213)(56,214)(57,201)(58,202)(59,203)(60,204)(61,205)(62,206)(63,207)(64,208)(65,125)(66,126)(67,127)(68,128)(69,121)(70,122)(71,123)(72,124)(73,141)(74,142)(75,143)(76,144)(77,137)(78,138)(79,139)(80,140)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,145)(89,183)(90,184)(91,177)(92,178)(93,179)(94,180)(95,181)(96,182)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,153)(104,154)(105,191)(106,192)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,218)(2,221)(3,224)(4,219)(5,222)(6,217)(7,220)(8,223)(9,63)(10,58)(11,61)(12,64)(13,59)(14,62)(15,57)(16,60)(17,51)(18,54)(19,49)(20,52)(21,55)(22,50)(23,53)(24,56)(25,197)(26,200)(27,195)(28,198)(29,193)(30,196)(31,199)(32,194)(33,84)(34,87)(35,82)(36,85)(37,88)(38,83)(39,86)(40,81)(41,101)(42,104)(43,99)(44,102)(45,97)(46,100)(47,103)(48,98)(65,95)(66,90)(67,93)(68,96)(69,91)(70,94)(71,89)(72,92)(73,107)(74,110)(75,105)(76,108)(77,111)(78,106)(79,109)(80,112)(113,146)(114,149)(115,152)(116,147)(117,150)(118,145)(119,148)(120,151)(121,177)(122,180)(123,183)(124,178)(125,181)(126,184)(127,179)(128,182)(129,159)(130,154)(131,157)(132,160)(133,155)(134,158)(135,153)(136,156)(137,189)(138,192)(139,187)(140,190)(141,185)(142,188)(143,191)(144,186)(161,215)(162,210)(163,213)(164,216)(165,211)(166,214)(167,209)(168,212)(169,203)(170,206)(171,201)(172,204)(173,207)(174,202)(175,205)(176,208), (1,40,72,172,161,160,191)(2,33,65,173,162,153,192)(3,34,66,174,163,154,185)(4,35,67,175,164,155,186)(5,36,68,176,165,156,187)(6,37,69,169,166,157,188)(7,38,70,170,167,158,189)(8,39,71,171,168,159,190)(9,20,103,106,197,114,125)(10,21,104,107,198,115,126)(11,22,97,108,199,116,127)(12,23,98,109,200,117,128)(13,24,99,110,193,118,121)(14,17,100,111,194,119,122)(15,18,101,112,195,120,123)(16,19,102,105,196,113,124)(25,149,181,63,52,47,78)(26,150,182,64,53,48,79)(27,151,183,57,54,41,80)(28,152,184,58,55,42,73)(29,145,177,59,56,43,74)(30,146,178,60,49,44,75)(31,147,179,61,50,45,76)(32,148,180,62,51,46,77)(81,92,204,215,132,143,218)(82,93,205,216,133,144,219)(83,94,206,209,134,137,220)(84,95,207,210,135,138,221)(85,96,208,211,136,139,222)(86,89,201,212,129,140,223)(87,90,202,213,130,141,224)(88,91,203,214,131,142,217), (1,191)(2,192)(3,185)(4,186)(5,187)(6,188)(7,189)(8,190)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,121)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,73)(33,153)(34,154)(35,155)(36,156)(37,157)(38,158)(39,159)(40,160)(41,147)(42,148)(43,149)(44,150)(45,151)(46,152)(47,145)(48,146)(49,182)(50,183)(51,184)(52,177)(53,178)(54,179)(55,180)(56,181)(57,61)(58,62)(59,63)(60,64)(65,162)(66,163)(67,164)(68,165)(69,166)(70,167)(71,168)(72,161)(81,136)(82,129)(83,130)(84,131)(85,132)(86,133)(87,134)(88,135)(89,216)(90,209)(91,210)(92,211)(93,212)(94,213)(95,214)(96,215)(97,116)(98,117)(99,118)(100,119)(101,120)(102,113)(103,114)(104,115)(105,196)(106,197)(107,198)(108,199)(109,200)(110,193)(111,194)(112,195)(137,224)(138,217)(139,218)(140,219)(141,220)(142,221)(143,222)(144,223)(201,205)(202,206)(203,207)(204,208)>;
G:=Group( (1,196)(2,197)(3,198)(4,199)(5,200)(6,193)(7,194)(8,195)(9,173)(10,174)(11,175)(12,176)(13,169)(14,170)(15,171)(16,172)(17,167)(18,168)(19,161)(20,162)(21,163)(22,164)(23,165)(24,166)(25,221)(26,222)(27,223)(28,224)(29,217)(30,218)(31,219)(32,220)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,113)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,215)(50,216)(51,209)(52,210)(53,211)(54,212)(55,213)(56,214)(57,201)(58,202)(59,203)(60,204)(61,205)(62,206)(63,207)(64,208)(65,125)(66,126)(67,127)(68,128)(69,121)(70,122)(71,123)(72,124)(73,141)(74,142)(75,143)(76,144)(77,137)(78,138)(79,139)(80,140)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,145)(89,183)(90,184)(91,177)(92,178)(93,179)(94,180)(95,181)(96,182)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,153)(104,154)(105,191)(106,192)(107,185)(108,186)(109,187)(110,188)(111,189)(112,190), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,218)(2,221)(3,224)(4,219)(5,222)(6,217)(7,220)(8,223)(9,63)(10,58)(11,61)(12,64)(13,59)(14,62)(15,57)(16,60)(17,51)(18,54)(19,49)(20,52)(21,55)(22,50)(23,53)(24,56)(25,197)(26,200)(27,195)(28,198)(29,193)(30,196)(31,199)(32,194)(33,84)(34,87)(35,82)(36,85)(37,88)(38,83)(39,86)(40,81)(41,101)(42,104)(43,99)(44,102)(45,97)(46,100)(47,103)(48,98)(65,95)(66,90)(67,93)(68,96)(69,91)(70,94)(71,89)(72,92)(73,107)(74,110)(75,105)(76,108)(77,111)(78,106)(79,109)(80,112)(113,146)(114,149)(115,152)(116,147)(117,150)(118,145)(119,148)(120,151)(121,177)(122,180)(123,183)(124,178)(125,181)(126,184)(127,179)(128,182)(129,159)(130,154)(131,157)(132,160)(133,155)(134,158)(135,153)(136,156)(137,189)(138,192)(139,187)(140,190)(141,185)(142,188)(143,191)(144,186)(161,215)(162,210)(163,213)(164,216)(165,211)(166,214)(167,209)(168,212)(169,203)(170,206)(171,201)(172,204)(173,207)(174,202)(175,205)(176,208), (1,40,72,172,161,160,191)(2,33,65,173,162,153,192)(3,34,66,174,163,154,185)(4,35,67,175,164,155,186)(5,36,68,176,165,156,187)(6,37,69,169,166,157,188)(7,38,70,170,167,158,189)(8,39,71,171,168,159,190)(9,20,103,106,197,114,125)(10,21,104,107,198,115,126)(11,22,97,108,199,116,127)(12,23,98,109,200,117,128)(13,24,99,110,193,118,121)(14,17,100,111,194,119,122)(15,18,101,112,195,120,123)(16,19,102,105,196,113,124)(25,149,181,63,52,47,78)(26,150,182,64,53,48,79)(27,151,183,57,54,41,80)(28,152,184,58,55,42,73)(29,145,177,59,56,43,74)(30,146,178,60,49,44,75)(31,147,179,61,50,45,76)(32,148,180,62,51,46,77)(81,92,204,215,132,143,218)(82,93,205,216,133,144,219)(83,94,206,209,134,137,220)(84,95,207,210,135,138,221)(85,96,208,211,136,139,222)(86,89,201,212,129,140,223)(87,90,202,213,130,141,224)(88,91,203,214,131,142,217), (1,191)(2,192)(3,185)(4,186)(5,187)(6,188)(7,189)(8,190)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,121)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,73)(33,153)(34,154)(35,155)(36,156)(37,157)(38,158)(39,159)(40,160)(41,147)(42,148)(43,149)(44,150)(45,151)(46,152)(47,145)(48,146)(49,182)(50,183)(51,184)(52,177)(53,178)(54,179)(55,180)(56,181)(57,61)(58,62)(59,63)(60,64)(65,162)(66,163)(67,164)(68,165)(69,166)(70,167)(71,168)(72,161)(81,136)(82,129)(83,130)(84,131)(85,132)(86,133)(87,134)(88,135)(89,216)(90,209)(91,210)(92,211)(93,212)(94,213)(95,214)(96,215)(97,116)(98,117)(99,118)(100,119)(101,120)(102,113)(103,114)(104,115)(105,196)(106,197)(107,198)(108,199)(109,200)(110,193)(111,194)(112,195)(137,224)(138,217)(139,218)(140,219)(141,220)(142,221)(143,222)(144,223)(201,205)(202,206)(203,207)(204,208) );
G=PermutationGroup([(1,196),(2,197),(3,198),(4,199),(5,200),(6,193),(7,194),(8,195),(9,173),(10,174),(11,175),(12,176),(13,169),(14,170),(15,171),(16,172),(17,167),(18,168),(19,161),(20,162),(21,163),(22,164),(23,165),(24,166),(25,221),(26,222),(27,223),(28,224),(29,217),(30,218),(31,219),(32,220),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,113),(41,129),(42,130),(43,131),(44,132),(45,133),(46,134),(47,135),(48,136),(49,215),(50,216),(51,209),(52,210),(53,211),(54,212),(55,213),(56,214),(57,201),(58,202),(59,203),(60,204),(61,205),(62,206),(63,207),(64,208),(65,125),(66,126),(67,127),(68,128),(69,121),(70,122),(71,123),(72,124),(73,141),(74,142),(75,143),(76,144),(77,137),(78,138),(79,139),(80,140),(81,146),(82,147),(83,148),(84,149),(85,150),(86,151),(87,152),(88,145),(89,183),(90,184),(91,177),(92,178),(93,179),(94,180),(95,181),(96,182),(97,155),(98,156),(99,157),(100,158),(101,159),(102,160),(103,153),(104,154),(105,191),(106,192),(107,185),(108,186),(109,187),(110,188),(111,189),(112,190)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208),(209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224)], [(1,218),(2,221),(3,224),(4,219),(5,222),(6,217),(7,220),(8,223),(9,63),(10,58),(11,61),(12,64),(13,59),(14,62),(15,57),(16,60),(17,51),(18,54),(19,49),(20,52),(21,55),(22,50),(23,53),(24,56),(25,197),(26,200),(27,195),(28,198),(29,193),(30,196),(31,199),(32,194),(33,84),(34,87),(35,82),(36,85),(37,88),(38,83),(39,86),(40,81),(41,101),(42,104),(43,99),(44,102),(45,97),(46,100),(47,103),(48,98),(65,95),(66,90),(67,93),(68,96),(69,91),(70,94),(71,89),(72,92),(73,107),(74,110),(75,105),(76,108),(77,111),(78,106),(79,109),(80,112),(113,146),(114,149),(115,152),(116,147),(117,150),(118,145),(119,148),(120,151),(121,177),(122,180),(123,183),(124,178),(125,181),(126,184),(127,179),(128,182),(129,159),(130,154),(131,157),(132,160),(133,155),(134,158),(135,153),(136,156),(137,189),(138,192),(139,187),(140,190),(141,185),(142,188),(143,191),(144,186),(161,215),(162,210),(163,213),(164,216),(165,211),(166,214),(167,209),(168,212),(169,203),(170,206),(171,201),(172,204),(173,207),(174,202),(175,205),(176,208)], [(1,40,72,172,161,160,191),(2,33,65,173,162,153,192),(3,34,66,174,163,154,185),(4,35,67,175,164,155,186),(5,36,68,176,165,156,187),(6,37,69,169,166,157,188),(7,38,70,170,167,158,189),(8,39,71,171,168,159,190),(9,20,103,106,197,114,125),(10,21,104,107,198,115,126),(11,22,97,108,199,116,127),(12,23,98,109,200,117,128),(13,24,99,110,193,118,121),(14,17,100,111,194,119,122),(15,18,101,112,195,120,123),(16,19,102,105,196,113,124),(25,149,181,63,52,47,78),(26,150,182,64,53,48,79),(27,151,183,57,54,41,80),(28,152,184,58,55,42,73),(29,145,177,59,56,43,74),(30,146,178,60,49,44,75),(31,147,179,61,50,45,76),(32,148,180,62,51,46,77),(81,92,204,215,132,143,218),(82,93,205,216,133,144,219),(83,94,206,209,134,137,220),(84,95,207,210,135,138,221),(85,96,208,211,136,139,222),(86,89,201,212,129,140,223),(87,90,202,213,130,141,224),(88,91,203,214,131,142,217)], [(1,191),(2,192),(3,185),(4,186),(5,187),(6,188),(7,189),(8,190),(17,122),(18,123),(19,124),(20,125),(21,126),(22,127),(23,128),(24,121),(25,74),(26,75),(27,76),(28,77),(29,78),(30,79),(31,80),(32,73),(33,153),(34,154),(35,155),(36,156),(37,157),(38,158),(39,159),(40,160),(41,147),(42,148),(43,149),(44,150),(45,151),(46,152),(47,145),(48,146),(49,182),(50,183),(51,184),(52,177),(53,178),(54,179),(55,180),(56,181),(57,61),(58,62),(59,63),(60,64),(65,162),(66,163),(67,164),(68,165),(69,166),(70,167),(71,168),(72,161),(81,136),(82,129),(83,130),(84,131),(85,132),(86,133),(87,134),(88,135),(89,216),(90,209),(91,210),(92,211),(93,212),(94,213),(95,214),(96,215),(97,116),(98,117),(99,118),(100,119),(101,120),(102,113),(103,114),(104,115),(105,196),(106,197),(107,198),(108,199),(109,200),(110,193),(111,194),(112,195),(137,224),(138,217),(139,218),(140,219),(141,220),(142,221),(143,222),(144,223),(201,205),(202,206),(203,207),(204,208)])
Matrix representation ►G ⊆ GL4(𝔽113) generated by
112 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 0 | 112 |
69 | 0 | 0 | 0 |
0 | 18 | 0 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 0 | 112 |
0 | 69 | 0 | 0 |
95 | 0 | 0 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 0 | 112 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 79 | 112 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 79 | 112 |
0 | 0 | 25 | 34 |
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[69,0,0,0,0,18,0,0,0,0,112,0,0,0,0,112],[0,95,0,0,69,0,0,0,0,0,112,0,0,0,0,112],[1,0,0,0,0,1,0,0,0,0,79,1,0,0,112,0],[1,0,0,0,0,112,0,0,0,0,79,25,0,0,112,34] >;
70 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 14A | ··· | 14I | 14J | ··· | 14O | 28A | ··· | 28F | 28G | ··· | 28L | 56A | ··· | 56L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 14 | 14 | 28 | 28 | 2 | 2 | 4 | 4 | 7 | 7 | 7 | 7 | 28 | 28 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 14 | 14 | 14 | 14 | 2 | ··· | 2 | 8 | ··· | 8 | 4 | ··· | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
70 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D7 | D14 | D14 | D14 | D14 | C4○D8 | D4×D7 | D4×D7 | SD16⋊3D7 |
kernel | C2×SD16⋊3D7 | D7×C2×C8 | C2×C56⋊C2 | SD16⋊3D7 | C2×D4⋊D7 | C2×C7⋊Q16 | C14×SD16 | C2×D4⋊2D7 | C2×Q8⋊2D7 | C4×D7 | C2×Dic7 | C22×D7 | C2×SD16 | C2×C8 | SD16 | C2×D4 | C2×Q8 | C14 | C4 | C22 | C2 |
# reps | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 3 | 12 | 3 | 3 | 8 | 3 | 3 | 12 |
In GAP, Magma, Sage, TeX
C_2\times SD_{16}\rtimes_3D_7
% in TeX
G:=Group("C2xSD16:3D7");
// GroupNames label
G:=SmallGroup(448,1214);
// by ID
G=gap.SmallGroup(448,1214);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,1123,185,136,438,235,102,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^3,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^4*c,e*d*e=d^-1>;
// generators/relations