Copied to
clipboard

?

G = C2×SD16⋊D7order 448 = 26·7

Direct product of C2 and SD16⋊D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×SD16⋊D7, SD169D14, C28.7C24, C56.35C23, Dic2817C22, Dic14.3C23, C4.44(D4×D7), C7⋊C8.2C23, (C2×SD16)⋊5D7, (C4×D7).16D4, C28.82(C2×D4), (Q8×D7)⋊6C22, C4.7(C23×D7), (C14×SD16)⋊6C2, D14.51(C2×D4), (C2×C8).103D14, C8⋊D79C22, (C4×D7).4C23, D4.5(C22×D7), C7⋊Q166C22, (C7×D4).5C23, C8.11(C22×D7), (C2×Dic28)⋊26C2, (C2×D4).183D14, Q8.1(C22×D7), (C7×Q8).1C23, C142(C8.C22), D4.D710C22, (C2×Q8).150D14, Dic7.56(C2×D4), (C7×SD16)⋊9C22, (C22×D7).99D4, C22.140(D4×D7), (C2×C28).524C23, (C2×C56).117C22, (C2×Dic7).193D4, D42D7.4C22, C14.108(C22×D4), (D4×C14).165C22, (Q8×C14).147C22, (C2×Dic14).196C22, (C2×Q8×D7)⋊15C2, C2.81(C2×D4×D7), C72(C2×C8.C22), (C2×C8⋊D7)⋊5C2, (C2×D4.D7)⋊28C2, (C2×C7⋊Q16)⋊25C2, (C2×C14).397(C2×D4), (C2×C7⋊C8).180C22, (C2×C4×D7).157C22, (C2×D42D7).10C2, (C2×C4).613(C22×D7), SmallGroup(448,1213)

Series: Derived Chief Lower central Upper central

C1C28 — C2×SD16⋊D7
C1C7C14C28C4×D7C2×C4×D7C2×Q8×D7 — C2×SD16⋊D7
C7C14C28 — C2×SD16⋊D7

Subgroups: 1156 in 258 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×8], C22, C22 [×8], C7, C8 [×2], C8 [×2], C2×C4, C2×C4 [×16], D4 [×2], D4 [×5], Q8 [×2], Q8 [×11], C23 [×2], D7 [×2], C14, C14 [×2], C14 [×2], C2×C8, C2×C8, M4(2) [×4], SD16 [×4], SD16 [×4], Q16 [×8], C22×C4 [×3], C2×D4, C2×D4, C2×Q8, C2×Q8 [×9], C4○D4 [×6], Dic7 [×2], Dic7 [×4], C28 [×2], C28 [×2], D14 [×2], D14 [×2], C2×C14, C2×C14 [×4], C2×M4(2), C2×SD16, C2×SD16, C2×Q16 [×2], C8.C22 [×8], C22×Q8, C2×C4○D4, C7⋊C8 [×2], C56 [×2], Dic14 [×4], Dic14 [×6], C4×D7 [×4], C4×D7 [×4], C2×Dic7, C2×Dic7 [×6], C7⋊D4 [×4], C2×C28, C2×C28, C7×D4 [×2], C7×D4, C7×Q8 [×2], C7×Q8, C22×D7, C22×C14, C2×C8.C22, C8⋊D7 [×4], Dic28 [×4], C2×C7⋊C8, D4.D7 [×4], C7⋊Q16 [×4], C2×C56, C7×SD16 [×4], C2×Dic14 [×2], C2×Dic14, C2×C4×D7, C2×C4×D7, D42D7 [×4], D42D7 [×2], Q8×D7 [×4], Q8×D7 [×2], C22×Dic7, C2×C7⋊D4, D4×C14, Q8×C14, C2×C8⋊D7, C2×Dic28, SD16⋊D7 [×8], C2×D4.D7, C2×C7⋊Q16, C14×SD16, C2×D42D7, C2×Q8×D7, C2×SD16⋊D7

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C8.C22 [×2], C22×D4, C22×D7 [×7], C2×C8.C22, D4×D7 [×2], C23×D7, SD16⋊D7 [×2], C2×D4×D7, C2×SD16⋊D7

Generators and relations
 G = < a,b,c,d,e | a2=b8=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b3, bd=db, ebe=b5, cd=dc, ece=b4c, ede=d-1 >

Smallest permutation representation
On 224 points
Generators in S224
(1 196)(2 197)(3 198)(4 199)(5 200)(6 193)(7 194)(8 195)(9 180)(10 181)(11 182)(12 183)(13 184)(14 177)(15 178)(16 179)(17 174)(18 175)(19 176)(20 169)(21 170)(22 171)(23 172)(24 173)(25 221)(26 222)(27 223)(28 224)(29 217)(30 218)(31 219)(32 220)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 113)(41 129)(42 130)(43 131)(44 132)(45 133)(46 134)(47 135)(48 136)(49 137)(50 138)(51 139)(52 140)(53 141)(54 142)(55 143)(56 144)(57 216)(58 209)(59 210)(60 211)(61 212)(62 213)(63 214)(64 215)(65 202)(66 203)(67 204)(68 205)(69 206)(70 207)(71 208)(72 201)(73 127)(74 128)(75 121)(76 122)(77 123)(78 124)(79 125)(80 126)(81 146)(82 147)(83 148)(84 149)(85 150)(86 151)(87 152)(88 145)(89 189)(90 190)(91 191)(92 192)(93 185)(94 186)(95 187)(96 188)(97 155)(98 156)(99 157)(100 158)(101 159)(102 160)(103 153)(104 154)(105 163)(106 164)(107 165)(108 166)(109 167)(110 168)(111 161)(112 162)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208)(209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224)
(1 223)(2 218)(3 221)(4 224)(5 219)(6 222)(7 217)(8 220)(9 71)(10 66)(11 69)(12 72)(13 67)(14 70)(15 65)(16 68)(17 59)(18 62)(19 57)(20 60)(21 63)(22 58)(23 61)(24 64)(25 198)(26 193)(27 196)(28 199)(29 194)(30 197)(31 200)(32 195)(33 81)(34 84)(35 87)(36 82)(37 85)(38 88)(39 83)(40 86)(41 98)(42 101)(43 104)(44 99)(45 102)(46 97)(47 100)(48 103)(49 108)(50 111)(51 106)(52 109)(53 112)(54 107)(55 110)(56 105)(73 90)(74 93)(75 96)(76 91)(77 94)(78 89)(79 92)(80 95)(113 151)(114 146)(115 149)(116 152)(117 147)(118 150)(119 145)(120 148)(121 188)(122 191)(123 186)(124 189)(125 192)(126 187)(127 190)(128 185)(129 156)(130 159)(131 154)(132 157)(133 160)(134 155)(135 158)(136 153)(137 166)(138 161)(139 164)(140 167)(141 162)(142 165)(143 168)(144 163)(169 211)(170 214)(171 209)(172 212)(173 215)(174 210)(175 213)(176 216)(177 207)(178 202)(179 205)(180 208)(181 203)(182 206)(183 201)(184 204)
(1 43 61 167 149 179 189)(2 44 62 168 150 180 190)(3 45 63 161 151 181 191)(4 46 64 162 152 182 192)(5 47 57 163 145 183 185)(6 48 58 164 146 184 186)(7 41 59 165 147 177 187)(8 42 60 166 148 178 188)(9 90 197 132 213 110 85)(10 91 198 133 214 111 86)(11 92 199 134 215 112 87)(12 93 200 135 216 105 88)(13 94 193 136 209 106 81)(14 95 194 129 210 107 82)(15 96 195 130 211 108 83)(16 89 196 131 212 109 84)(17 142 117 207 126 217 98)(18 143 118 208 127 218 99)(19 144 119 201 128 219 100)(20 137 120 202 121 220 101)(21 138 113 203 122 221 102)(22 139 114 204 123 222 103)(23 140 115 205 124 223 104)(24 141 116 206 125 224 97)(25 160 170 50 40 66 76)(26 153 171 51 33 67 77)(27 154 172 52 34 68 78)(28 155 173 53 35 69 79)(29 156 174 54 36 70 80)(30 157 175 55 37 71 73)(31 158 176 56 38 72 74)(32 159 169 49 39 65 75)
(1 189)(2 186)(3 191)(4 188)(5 185)(6 190)(7 187)(8 192)(9 136)(10 133)(11 130)(12 135)(13 132)(14 129)(15 134)(16 131)(17 113)(18 118)(19 115)(20 120)(21 117)(22 114)(23 119)(24 116)(25 80)(26 77)(27 74)(28 79)(29 76)(30 73)(31 78)(32 75)(33 171)(34 176)(35 173)(36 170)(37 175)(38 172)(39 169)(40 174)(41 177)(42 182)(43 179)(44 184)(45 181)(46 178)(47 183)(48 180)(50 54)(52 56)(57 145)(58 150)(59 147)(60 152)(61 149)(62 146)(63 151)(64 148)(65 159)(66 156)(67 153)(68 158)(69 155)(70 160)(71 157)(72 154)(81 213)(82 210)(83 215)(84 212)(85 209)(86 214)(87 211)(88 216)(89 196)(90 193)(91 198)(92 195)(93 200)(94 197)(95 194)(96 199)(97 206)(98 203)(99 208)(100 205)(101 202)(102 207)(103 204)(104 201)(106 110)(108 112)(121 220)(122 217)(123 222)(124 219)(125 224)(126 221)(127 218)(128 223)(138 142)(140 144)(162 166)(164 168)

G:=sub<Sym(224)| (1,196)(2,197)(3,198)(4,199)(5,200)(6,193)(7,194)(8,195)(9,180)(10,181)(11,182)(12,183)(13,184)(14,177)(15,178)(16,179)(17,174)(18,175)(19,176)(20,169)(21,170)(22,171)(23,172)(24,173)(25,221)(26,222)(27,223)(28,224)(29,217)(30,218)(31,219)(32,220)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,113)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,216)(58,209)(59,210)(60,211)(61,212)(62,213)(63,214)(64,215)(65,202)(66,203)(67,204)(68,205)(69,206)(70,207)(71,208)(72,201)(73,127)(74,128)(75,121)(76,122)(77,123)(78,124)(79,125)(80,126)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,145)(89,189)(90,190)(91,191)(92,192)(93,185)(94,186)(95,187)(96,188)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,153)(104,154)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,161)(112,162), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,223)(2,218)(3,221)(4,224)(5,219)(6,222)(7,217)(8,220)(9,71)(10,66)(11,69)(12,72)(13,67)(14,70)(15,65)(16,68)(17,59)(18,62)(19,57)(20,60)(21,63)(22,58)(23,61)(24,64)(25,198)(26,193)(27,196)(28,199)(29,194)(30,197)(31,200)(32,195)(33,81)(34,84)(35,87)(36,82)(37,85)(38,88)(39,83)(40,86)(41,98)(42,101)(43,104)(44,99)(45,102)(46,97)(47,100)(48,103)(49,108)(50,111)(51,106)(52,109)(53,112)(54,107)(55,110)(56,105)(73,90)(74,93)(75,96)(76,91)(77,94)(78,89)(79,92)(80,95)(113,151)(114,146)(115,149)(116,152)(117,147)(118,150)(119,145)(120,148)(121,188)(122,191)(123,186)(124,189)(125,192)(126,187)(127,190)(128,185)(129,156)(130,159)(131,154)(132,157)(133,160)(134,155)(135,158)(136,153)(137,166)(138,161)(139,164)(140,167)(141,162)(142,165)(143,168)(144,163)(169,211)(170,214)(171,209)(172,212)(173,215)(174,210)(175,213)(176,216)(177,207)(178,202)(179,205)(180,208)(181,203)(182,206)(183,201)(184,204), (1,43,61,167,149,179,189)(2,44,62,168,150,180,190)(3,45,63,161,151,181,191)(4,46,64,162,152,182,192)(5,47,57,163,145,183,185)(6,48,58,164,146,184,186)(7,41,59,165,147,177,187)(8,42,60,166,148,178,188)(9,90,197,132,213,110,85)(10,91,198,133,214,111,86)(11,92,199,134,215,112,87)(12,93,200,135,216,105,88)(13,94,193,136,209,106,81)(14,95,194,129,210,107,82)(15,96,195,130,211,108,83)(16,89,196,131,212,109,84)(17,142,117,207,126,217,98)(18,143,118,208,127,218,99)(19,144,119,201,128,219,100)(20,137,120,202,121,220,101)(21,138,113,203,122,221,102)(22,139,114,204,123,222,103)(23,140,115,205,124,223,104)(24,141,116,206,125,224,97)(25,160,170,50,40,66,76)(26,153,171,51,33,67,77)(27,154,172,52,34,68,78)(28,155,173,53,35,69,79)(29,156,174,54,36,70,80)(30,157,175,55,37,71,73)(31,158,176,56,38,72,74)(32,159,169,49,39,65,75), (1,189)(2,186)(3,191)(4,188)(5,185)(6,190)(7,187)(8,192)(9,136)(10,133)(11,130)(12,135)(13,132)(14,129)(15,134)(16,131)(17,113)(18,118)(19,115)(20,120)(21,117)(22,114)(23,119)(24,116)(25,80)(26,77)(27,74)(28,79)(29,76)(30,73)(31,78)(32,75)(33,171)(34,176)(35,173)(36,170)(37,175)(38,172)(39,169)(40,174)(41,177)(42,182)(43,179)(44,184)(45,181)(46,178)(47,183)(48,180)(50,54)(52,56)(57,145)(58,150)(59,147)(60,152)(61,149)(62,146)(63,151)(64,148)(65,159)(66,156)(67,153)(68,158)(69,155)(70,160)(71,157)(72,154)(81,213)(82,210)(83,215)(84,212)(85,209)(86,214)(87,211)(88,216)(89,196)(90,193)(91,198)(92,195)(93,200)(94,197)(95,194)(96,199)(97,206)(98,203)(99,208)(100,205)(101,202)(102,207)(103,204)(104,201)(106,110)(108,112)(121,220)(122,217)(123,222)(124,219)(125,224)(126,221)(127,218)(128,223)(138,142)(140,144)(162,166)(164,168)>;

G:=Group( (1,196)(2,197)(3,198)(4,199)(5,200)(6,193)(7,194)(8,195)(9,180)(10,181)(11,182)(12,183)(13,184)(14,177)(15,178)(16,179)(17,174)(18,175)(19,176)(20,169)(21,170)(22,171)(23,172)(24,173)(25,221)(26,222)(27,223)(28,224)(29,217)(30,218)(31,219)(32,220)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,113)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,216)(58,209)(59,210)(60,211)(61,212)(62,213)(63,214)(64,215)(65,202)(66,203)(67,204)(68,205)(69,206)(70,207)(71,208)(72,201)(73,127)(74,128)(75,121)(76,122)(77,123)(78,124)(79,125)(80,126)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,145)(89,189)(90,190)(91,191)(92,192)(93,185)(94,186)(95,187)(96,188)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,153)(104,154)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,161)(112,162), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,223)(2,218)(3,221)(4,224)(5,219)(6,222)(7,217)(8,220)(9,71)(10,66)(11,69)(12,72)(13,67)(14,70)(15,65)(16,68)(17,59)(18,62)(19,57)(20,60)(21,63)(22,58)(23,61)(24,64)(25,198)(26,193)(27,196)(28,199)(29,194)(30,197)(31,200)(32,195)(33,81)(34,84)(35,87)(36,82)(37,85)(38,88)(39,83)(40,86)(41,98)(42,101)(43,104)(44,99)(45,102)(46,97)(47,100)(48,103)(49,108)(50,111)(51,106)(52,109)(53,112)(54,107)(55,110)(56,105)(73,90)(74,93)(75,96)(76,91)(77,94)(78,89)(79,92)(80,95)(113,151)(114,146)(115,149)(116,152)(117,147)(118,150)(119,145)(120,148)(121,188)(122,191)(123,186)(124,189)(125,192)(126,187)(127,190)(128,185)(129,156)(130,159)(131,154)(132,157)(133,160)(134,155)(135,158)(136,153)(137,166)(138,161)(139,164)(140,167)(141,162)(142,165)(143,168)(144,163)(169,211)(170,214)(171,209)(172,212)(173,215)(174,210)(175,213)(176,216)(177,207)(178,202)(179,205)(180,208)(181,203)(182,206)(183,201)(184,204), (1,43,61,167,149,179,189)(2,44,62,168,150,180,190)(3,45,63,161,151,181,191)(4,46,64,162,152,182,192)(5,47,57,163,145,183,185)(6,48,58,164,146,184,186)(7,41,59,165,147,177,187)(8,42,60,166,148,178,188)(9,90,197,132,213,110,85)(10,91,198,133,214,111,86)(11,92,199,134,215,112,87)(12,93,200,135,216,105,88)(13,94,193,136,209,106,81)(14,95,194,129,210,107,82)(15,96,195,130,211,108,83)(16,89,196,131,212,109,84)(17,142,117,207,126,217,98)(18,143,118,208,127,218,99)(19,144,119,201,128,219,100)(20,137,120,202,121,220,101)(21,138,113,203,122,221,102)(22,139,114,204,123,222,103)(23,140,115,205,124,223,104)(24,141,116,206,125,224,97)(25,160,170,50,40,66,76)(26,153,171,51,33,67,77)(27,154,172,52,34,68,78)(28,155,173,53,35,69,79)(29,156,174,54,36,70,80)(30,157,175,55,37,71,73)(31,158,176,56,38,72,74)(32,159,169,49,39,65,75), (1,189)(2,186)(3,191)(4,188)(5,185)(6,190)(7,187)(8,192)(9,136)(10,133)(11,130)(12,135)(13,132)(14,129)(15,134)(16,131)(17,113)(18,118)(19,115)(20,120)(21,117)(22,114)(23,119)(24,116)(25,80)(26,77)(27,74)(28,79)(29,76)(30,73)(31,78)(32,75)(33,171)(34,176)(35,173)(36,170)(37,175)(38,172)(39,169)(40,174)(41,177)(42,182)(43,179)(44,184)(45,181)(46,178)(47,183)(48,180)(50,54)(52,56)(57,145)(58,150)(59,147)(60,152)(61,149)(62,146)(63,151)(64,148)(65,159)(66,156)(67,153)(68,158)(69,155)(70,160)(71,157)(72,154)(81,213)(82,210)(83,215)(84,212)(85,209)(86,214)(87,211)(88,216)(89,196)(90,193)(91,198)(92,195)(93,200)(94,197)(95,194)(96,199)(97,206)(98,203)(99,208)(100,205)(101,202)(102,207)(103,204)(104,201)(106,110)(108,112)(121,220)(122,217)(123,222)(124,219)(125,224)(126,221)(127,218)(128,223)(138,142)(140,144)(162,166)(164,168) );

G=PermutationGroup([(1,196),(2,197),(3,198),(4,199),(5,200),(6,193),(7,194),(8,195),(9,180),(10,181),(11,182),(12,183),(13,184),(14,177),(15,178),(16,179),(17,174),(18,175),(19,176),(20,169),(21,170),(22,171),(23,172),(24,173),(25,221),(26,222),(27,223),(28,224),(29,217),(30,218),(31,219),(32,220),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,113),(41,129),(42,130),(43,131),(44,132),(45,133),(46,134),(47,135),(48,136),(49,137),(50,138),(51,139),(52,140),(53,141),(54,142),(55,143),(56,144),(57,216),(58,209),(59,210),(60,211),(61,212),(62,213),(63,214),(64,215),(65,202),(66,203),(67,204),(68,205),(69,206),(70,207),(71,208),(72,201),(73,127),(74,128),(75,121),(76,122),(77,123),(78,124),(79,125),(80,126),(81,146),(82,147),(83,148),(84,149),(85,150),(86,151),(87,152),(88,145),(89,189),(90,190),(91,191),(92,192),(93,185),(94,186),(95,187),(96,188),(97,155),(98,156),(99,157),(100,158),(101,159),(102,160),(103,153),(104,154),(105,163),(106,164),(107,165),(108,166),(109,167),(110,168),(111,161),(112,162)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208),(209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224)], [(1,223),(2,218),(3,221),(4,224),(5,219),(6,222),(7,217),(8,220),(9,71),(10,66),(11,69),(12,72),(13,67),(14,70),(15,65),(16,68),(17,59),(18,62),(19,57),(20,60),(21,63),(22,58),(23,61),(24,64),(25,198),(26,193),(27,196),(28,199),(29,194),(30,197),(31,200),(32,195),(33,81),(34,84),(35,87),(36,82),(37,85),(38,88),(39,83),(40,86),(41,98),(42,101),(43,104),(44,99),(45,102),(46,97),(47,100),(48,103),(49,108),(50,111),(51,106),(52,109),(53,112),(54,107),(55,110),(56,105),(73,90),(74,93),(75,96),(76,91),(77,94),(78,89),(79,92),(80,95),(113,151),(114,146),(115,149),(116,152),(117,147),(118,150),(119,145),(120,148),(121,188),(122,191),(123,186),(124,189),(125,192),(126,187),(127,190),(128,185),(129,156),(130,159),(131,154),(132,157),(133,160),(134,155),(135,158),(136,153),(137,166),(138,161),(139,164),(140,167),(141,162),(142,165),(143,168),(144,163),(169,211),(170,214),(171,209),(172,212),(173,215),(174,210),(175,213),(176,216),(177,207),(178,202),(179,205),(180,208),(181,203),(182,206),(183,201),(184,204)], [(1,43,61,167,149,179,189),(2,44,62,168,150,180,190),(3,45,63,161,151,181,191),(4,46,64,162,152,182,192),(5,47,57,163,145,183,185),(6,48,58,164,146,184,186),(7,41,59,165,147,177,187),(8,42,60,166,148,178,188),(9,90,197,132,213,110,85),(10,91,198,133,214,111,86),(11,92,199,134,215,112,87),(12,93,200,135,216,105,88),(13,94,193,136,209,106,81),(14,95,194,129,210,107,82),(15,96,195,130,211,108,83),(16,89,196,131,212,109,84),(17,142,117,207,126,217,98),(18,143,118,208,127,218,99),(19,144,119,201,128,219,100),(20,137,120,202,121,220,101),(21,138,113,203,122,221,102),(22,139,114,204,123,222,103),(23,140,115,205,124,223,104),(24,141,116,206,125,224,97),(25,160,170,50,40,66,76),(26,153,171,51,33,67,77),(27,154,172,52,34,68,78),(28,155,173,53,35,69,79),(29,156,174,54,36,70,80),(30,157,175,55,37,71,73),(31,158,176,56,38,72,74),(32,159,169,49,39,65,75)], [(1,189),(2,186),(3,191),(4,188),(5,185),(6,190),(7,187),(8,192),(9,136),(10,133),(11,130),(12,135),(13,132),(14,129),(15,134),(16,131),(17,113),(18,118),(19,115),(20,120),(21,117),(22,114),(23,119),(24,116),(25,80),(26,77),(27,74),(28,79),(29,76),(30,73),(31,78),(32,75),(33,171),(34,176),(35,173),(36,170),(37,175),(38,172),(39,169),(40,174),(41,177),(42,182),(43,179),(44,184),(45,181),(46,178),(47,183),(48,180),(50,54),(52,56),(57,145),(58,150),(59,147),(60,152),(61,149),(62,146),(63,151),(64,148),(65,159),(66,156),(67,153),(68,158),(69,155),(70,160),(71,157),(72,154),(81,213),(82,210),(83,215),(84,212),(85,209),(86,214),(87,211),(88,216),(89,196),(90,193),(91,198),(92,195),(93,200),(94,197),(95,194),(96,199),(97,206),(98,203),(99,208),(100,205),(101,202),(102,207),(103,204),(104,201),(106,110),(108,112),(121,220),(122,217),(123,222),(124,219),(125,224),(126,221),(127,218),(128,223),(138,142),(140,144),(162,166),(164,168)])

Matrix representation G ⊆ GL6(𝔽113)

11200000
01120000
00112000
00011200
00001120
00000112
,
60180000
95530000
00003727
00001276
0038433727
00107751276
,
010000
100000
0086203492
0034276679
00103662793
0067107986
,
100000
010000
0010311200
001008900
0000103112
000010089
,
100000
010000
001032500
001001000
000010325
000010010

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[60,95,0,0,0,0,18,53,0,0,0,0,0,0,0,0,38,107,0,0,0,0,43,75,0,0,37,12,37,12,0,0,27,76,27,76],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,86,34,103,67,0,0,20,27,66,10,0,0,34,66,27,79,0,0,92,79,93,86],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,103,100,0,0,0,0,112,89,0,0,0,0,0,0,103,100,0,0,0,0,112,89],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,103,100,0,0,0,0,25,10,0,0,0,0,0,0,103,100,0,0,0,0,25,10] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J7A7B7C8A8B8C8D14A···14I14J···14O28A···28F28G···28L56A···56L
order122222224444444444777888814···1414···1428···2828···2856···56
size111144141422441414282828282224428282···28···84···48···84···4

64 irreducible representations

dim111111111222222224444
type+++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14C8.C22D4×D7D4×D7SD16⋊D7
kernelC2×SD16⋊D7C2×C8⋊D7C2×Dic28SD16⋊D7C2×D4.D7C2×C7⋊Q16C14×SD16C2×D42D7C2×Q8×D7C4×D7C2×Dic7C22×D7C2×SD16C2×C8SD16C2×D4C2×Q8C14C4C22C2
# reps11181111121133123323312

In GAP, Magma, Sage, TeX

C_2\times SD_{16}\rtimes D_7
% in TeX

G:=Group("C2xSD16:D7");
// GroupNames label

G:=SmallGroup(448,1213);
// by ID

G=gap.SmallGroup(448,1213);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,1123,185,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^3,b*d=d*b,e*b*e=b^5,c*d=d*c,e*c*e=b^4*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽