Copied to
clipboard

?

G = D813D14order 448 = 26·7

2nd semidirect product of D8 and D14 acting through Inn(D8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D813D14, D28.28D4, C28.4C24, D5616C22, C56.40C23, D28.2C23, Dic14.28D4, Dic2814C22, Dic14.2C23, (D7×D8)⋊6C2, (C2×C8)⋊9D14, C72(D4○D8), (C14×D8)⋊3C2, (C2×D8)⋊12D7, C4.75(D4×D7), C7⋊D4.8D4, C7⋊C8.1C23, (C2×D4)⋊14D14, D8⋊D75C2, D83D76C2, (C2×C56)⋊3C22, D4⋊D71C22, C28.79(C2×D4), (D4×D7)⋊1C22, (C8×D7)⋊7C22, D46D145C2, D567C23C2, C4.4(C23×D7), D14.26(C2×D4), C4○D283C22, (C7×D8)⋊11C22, D4.D71C22, (C7×D4).2C23, (C4×D7).2C23, D4.2(C22×D7), C8.10(C22×D7), C22.20(D4×D7), D4.D147C2, D28.2C42C2, (D4×C14)⋊20C22, D42D71C22, C56⋊C214C22, C8⋊D713C22, Dic7.31(C2×D4), (C2×C28).521C23, C14.105(C22×D4), C4.Dic728C22, C2.78(C2×D4×D7), (C2×C14).394(C2×D4), (C2×C4).229(C22×D7), SmallGroup(448,1210)

Series: Derived Chief Lower central Upper central

C1C28 — D813D14
C1C7C14C28C4×D7C4○D28D46D14 — D813D14
C7C14C28 — D813D14

Subgroups: 1476 in 268 conjugacy classes, 99 normal (29 characteristic)
C1, C2, C2 [×9], C4 [×2], C4 [×4], C22, C22 [×14], C7, C8 [×2], C8 [×2], C2×C4, C2×C4 [×8], D4 [×4], D4 [×17], Q8 [×3], C23 [×6], D7 [×4], C14, C14 [×5], C2×C8, C2×C8 [×2], M4(2) [×3], D8 [×4], D8 [×5], SD16 [×6], Q16, C2×D4 [×2], C2×D4 [×10], C4○D4 [×9], Dic7 [×2], Dic7 [×2], C28 [×2], D14 [×2], D14 [×6], C2×C14, C2×C14 [×6], C8○D4, C2×D8, C2×D8 [×2], C4○D8 [×3], C8⋊C22 [×6], 2+ (1+4) [×2], C7⋊C8 [×2], C56 [×2], Dic14, Dic14 [×2], C4×D7 [×2], C4×D7 [×2], D28, D28 [×2], C2×Dic7 [×4], C7⋊D4 [×2], C7⋊D4 [×10], C2×C28, C7×D4 [×4], C7×D4 [×2], C22×D7 [×4], C22×C14 [×2], D4○D8, C8×D7 [×2], C8⋊D7 [×2], C56⋊C2 [×2], D56, Dic28, C4.Dic7, D4⋊D7 [×4], D4.D7 [×4], C2×C56, C7×D8 [×4], C4○D28, C4○D28 [×2], D4×D7 [×4], D4×D7 [×2], D42D7 [×4], D42D7 [×2], C2×C7⋊D4 [×4], D4×C14 [×2], D28.2C4, D567C2, D7×D8 [×2], D8⋊D7 [×4], D83D7 [×2], D4.D14 [×2], C14×D8, D46D14 [×2], D813D14

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C22×D4, C22×D7 [×7], D4○D8, D4×D7 [×2], C23×D7, C2×D4×D7, D813D14

Generators and relations
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=cac-1=a-1, ad=da, cbc-1=a6b, dbd=a4b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 87 31 71 27 78 38 94)(2 95 39 79 28 72 32 88)(3 89 33 73 22 80 40 96)(4 97 41 81 23 74 34 90)(5 91 35 75 24 82 42 98)(6 85 29 83 25 76 36 92)(7 93 37 77 26 84 30 86)(8 109 47 57 20 64 54 102)(9 103 55 65 21 58 48 110)(10 111 49 59 15 66 56 104)(11 105 43 67 16 60 50 112)(12 99 51 61 17 68 44 106)(13 107 45 69 18 62 52 100)(14 101 53 63 19 70 46 108)
(1 100)(2 108)(3 102)(4 110)(5 104)(6 112)(7 106)(8 96)(9 90)(10 98)(11 92)(12 86)(13 94)(14 88)(15 75)(16 83)(17 77)(18 71)(19 79)(20 73)(21 81)(22 57)(23 65)(24 59)(25 67)(26 61)(27 69)(28 63)(29 60)(30 99)(31 62)(32 101)(33 64)(34 103)(35 66)(36 105)(37 68)(38 107)(39 70)(40 109)(41 58)(42 111)(43 76)(44 93)(45 78)(46 95)(47 80)(48 97)(49 82)(50 85)(51 84)(52 87)(53 72)(54 89)(55 74)(56 91)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 28)(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 12)(9 11)(13 14)(16 21)(17 20)(18 19)(29 34)(30 33)(31 32)(35 42)(36 41)(37 40)(38 39)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)(57 61)(58 60)(62 70)(63 69)(64 68)(65 67)(71 88)(72 87)(73 86)(74 85)(75 98)(76 97)(77 96)(78 95)(79 94)(80 93)(81 92)(82 91)(83 90)(84 89)(99 109)(100 108)(101 107)(102 106)(103 105)(110 112)

G:=sub<Sym(112)| (1,87,31,71,27,78,38,94)(2,95,39,79,28,72,32,88)(3,89,33,73,22,80,40,96)(4,97,41,81,23,74,34,90)(5,91,35,75,24,82,42,98)(6,85,29,83,25,76,36,92)(7,93,37,77,26,84,30,86)(8,109,47,57,20,64,54,102)(9,103,55,65,21,58,48,110)(10,111,49,59,15,66,56,104)(11,105,43,67,16,60,50,112)(12,99,51,61,17,68,44,106)(13,107,45,69,18,62,52,100)(14,101,53,63,19,70,46,108), (1,100)(2,108)(3,102)(4,110)(5,104)(6,112)(7,106)(8,96)(9,90)(10,98)(11,92)(12,86)(13,94)(14,88)(15,75)(16,83)(17,77)(18,71)(19,79)(20,73)(21,81)(22,57)(23,65)(24,59)(25,67)(26,61)(27,69)(28,63)(29,60)(30,99)(31,62)(32,101)(33,64)(34,103)(35,66)(36,105)(37,68)(38,107)(39,70)(40,109)(41,58)(42,111)(43,76)(44,93)(45,78)(46,95)(47,80)(48,97)(49,82)(50,85)(51,84)(52,87)(53,72)(54,89)(55,74)(56,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,12)(9,11)(13,14)(16,21)(17,20)(18,19)(29,34)(30,33)(31,32)(35,42)(36,41)(37,40)(38,39)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(57,61)(58,60)(62,70)(63,69)(64,68)(65,67)(71,88)(72,87)(73,86)(74,85)(75,98)(76,97)(77,96)(78,95)(79,94)(80,93)(81,92)(82,91)(83,90)(84,89)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112)>;

G:=Group( (1,87,31,71,27,78,38,94)(2,95,39,79,28,72,32,88)(3,89,33,73,22,80,40,96)(4,97,41,81,23,74,34,90)(5,91,35,75,24,82,42,98)(6,85,29,83,25,76,36,92)(7,93,37,77,26,84,30,86)(8,109,47,57,20,64,54,102)(9,103,55,65,21,58,48,110)(10,111,49,59,15,66,56,104)(11,105,43,67,16,60,50,112)(12,99,51,61,17,68,44,106)(13,107,45,69,18,62,52,100)(14,101,53,63,19,70,46,108), (1,100)(2,108)(3,102)(4,110)(5,104)(6,112)(7,106)(8,96)(9,90)(10,98)(11,92)(12,86)(13,94)(14,88)(15,75)(16,83)(17,77)(18,71)(19,79)(20,73)(21,81)(22,57)(23,65)(24,59)(25,67)(26,61)(27,69)(28,63)(29,60)(30,99)(31,62)(32,101)(33,64)(34,103)(35,66)(36,105)(37,68)(38,107)(39,70)(40,109)(41,58)(42,111)(43,76)(44,93)(45,78)(46,95)(47,80)(48,97)(49,82)(50,85)(51,84)(52,87)(53,72)(54,89)(55,74)(56,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,12)(9,11)(13,14)(16,21)(17,20)(18,19)(29,34)(30,33)(31,32)(35,42)(36,41)(37,40)(38,39)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(57,61)(58,60)(62,70)(63,69)(64,68)(65,67)(71,88)(72,87)(73,86)(74,85)(75,98)(76,97)(77,96)(78,95)(79,94)(80,93)(81,92)(82,91)(83,90)(84,89)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112) );

G=PermutationGroup([(1,87,31,71,27,78,38,94),(2,95,39,79,28,72,32,88),(3,89,33,73,22,80,40,96),(4,97,41,81,23,74,34,90),(5,91,35,75,24,82,42,98),(6,85,29,83,25,76,36,92),(7,93,37,77,26,84,30,86),(8,109,47,57,20,64,54,102),(9,103,55,65,21,58,48,110),(10,111,49,59,15,66,56,104),(11,105,43,67,16,60,50,112),(12,99,51,61,17,68,44,106),(13,107,45,69,18,62,52,100),(14,101,53,63,19,70,46,108)], [(1,100),(2,108),(3,102),(4,110),(5,104),(6,112),(7,106),(8,96),(9,90),(10,98),(11,92),(12,86),(13,94),(14,88),(15,75),(16,83),(17,77),(18,71),(19,79),(20,73),(21,81),(22,57),(23,65),(24,59),(25,67),(26,61),(27,69),(28,63),(29,60),(30,99),(31,62),(32,101),(33,64),(34,103),(35,66),(36,105),(37,68),(38,107),(39,70),(40,109),(41,58),(42,111),(43,76),(44,93),(45,78),(46,95),(47,80),(48,97),(49,82),(50,85),(51,84),(52,87),(53,72),(54,89),(55,74),(56,91)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,28),(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,12),(9,11),(13,14),(16,21),(17,20),(18,19),(29,34),(30,33),(31,32),(35,42),(36,41),(37,40),(38,39),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50),(57,61),(58,60),(62,70),(63,69),(64,68),(65,67),(71,88),(72,87),(73,86),(74,85),(75,98),(76,97),(77,96),(78,95),(79,94),(80,93),(81,92),(82,91),(83,90),(84,89),(99,109),(100,108),(101,107),(102,106),(103,105),(110,112)])

Matrix representation G ⊆ GL4(𝔽113) generated by

004626
00870
0100510
1323051
,
74847893
29398996
651032129
101745592
,
33331486
801045727
008180
00668
,
808000
93300
00104104
00349
G:=sub<GL(4,GF(113))| [0,0,0,13,0,0,100,23,46,87,51,0,26,0,0,51],[74,29,65,101,84,39,103,74,78,89,21,55,93,96,29,92],[33,80,0,0,33,104,0,0,14,57,81,66,86,27,80,8],[80,9,0,0,80,33,0,0,0,0,104,34,0,0,104,9] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F7A7B7C8A8B8C8D8E14A···14I14J···14U28A···28F56A···56L
order122222222224444447778888814···1414···1428···2856···56
size112444414142828221414282822222428282···28···84···44···4

64 irreducible representations

dim11111111122222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D4○D8D4×D7D4×D7D813D14
kernelD813D14D28.2C4D567C2D7×D8D8⋊D7D83D7D4.D14C14×D8D46D14Dic14D28C7⋊D4C2×D8C2×C8D8C2×D4C7C4C22C1
# reps1112422121123312623312

In GAP, Magma, Sage, TeX

D_8\rtimes_{13}D_{14}
% in TeX

G:=Group("D8:13D14");
// GroupNames label

G:=SmallGroup(448,1210);
// by ID

G=gap.SmallGroup(448,1210);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,185,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^6*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽