metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20⋊Q8⋊5C2, C4⋊C4.18D10, C40⋊8C4⋊19C2, Q8⋊C4⋊15D5, Q8⋊Dic5⋊1C2, (C2×C8).173D10, (C2×Q8).11D10, D20⋊5C4.7C2, D20⋊6C4.1C2, C20.15(C4○D4), C4.29(C4○D20), (C2×Dic5).34D4, C22.189(D4×D5), C4.55(D4⋊2D5), C2.15(D40⋊C2), C10.60(C8⋊C22), (C2×C40).193C22, (C2×C20).235C23, C2.9(Q16⋊D5), C20.23D4.4C2, (C2×D20).61C22, C4⋊Dic5.84C22, (Q8×C10).18C22, C10.27(C4.4D4), C10.54(C8.C22), (C4×Dic5).25C22, C5⋊3(C42.28C22), C2.17(Dic5.5D4), (C5×Q8⋊C4)⋊16C2, (C2×C10).248(C2×D4), (C5×C4⋊C4).36C22, (C2×C5⋊2C8).30C22, (C2×C4).342(C22×D5), SmallGroup(320,422)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C4 — Q8⋊C4 |
Generators and relations for Q8⋊C4⋊D5
G = < a,b,c,d,e | a4=c4=d5=e2=1, b2=a2, bab-1=cac-1=eae=a-1, ad=da, cbc-1=a-1b, bd=db, ebe=a2bc2, cd=dc, ece=ac-1, ede=d-1 >
Subgroups: 462 in 100 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×D4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, C2×C10, C8⋊C4, D4⋊C4, Q8⋊C4, Q8⋊C4, C4.4D4, C4⋊Q8, C5⋊2C8, C40, Dic10, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C42.28C22, C2×C5⋊2C8, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C5×C4⋊C4, C2×C40, C2×Dic10, C2×D20, Q8×C10, D20⋊6C4, C40⋊8C4, D20⋊5C4, Q8⋊Dic5, C5×Q8⋊C4, C20⋊Q8, C20.23D4, Q8⋊C4⋊D5
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4.4D4, C8⋊C22, C8.C22, C22×D5, C42.28C22, C4○D20, D4×D5, D4⋊2D5, Dic5.5D4, D40⋊C2, Q16⋊D5, Q8⋊C4⋊D5
(1 29 9 24)(2 30 10 25)(3 26 6 21)(4 27 7 22)(5 28 8 23)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)(41 61 46 66)(42 62 47 67)(43 63 48 68)(44 64 49 69)(45 65 50 70)(51 71 56 76)(52 72 57 77)(53 73 58 78)(54 74 59 79)(55 75 60 80)(81 101 86 106)(82 102 87 107)(83 103 88 108)(84 104 89 109)(85 105 90 110)(91 111 96 116)(92 112 97 117)(93 113 98 118)(94 114 99 119)(95 115 100 120)(121 146 126 141)(122 147 127 142)(123 148 128 143)(124 149 129 144)(125 150 130 145)(131 156 136 151)(132 157 137 152)(133 158 138 153)(134 159 139 154)(135 160 140 155)
(1 59 9 54)(2 60 10 55)(3 56 6 51)(4 57 7 52)(5 58 8 53)(11 46 16 41)(12 47 17 42)(13 48 18 43)(14 49 19 44)(15 50 20 45)(21 76 26 71)(22 77 27 72)(23 78 28 73)(24 79 29 74)(25 80 30 75)(31 66 36 61)(32 67 37 62)(33 68 38 63)(34 69 39 64)(35 70 40 65)(81 156 86 151)(82 157 87 152)(83 158 88 153)(84 159 89 154)(85 160 90 155)(91 146 96 141)(92 147 97 142)(93 148 98 143)(94 149 99 144)(95 150 100 145)(101 131 106 136)(102 132 107 137)(103 133 108 138)(104 134 109 139)(105 135 110 140)(111 121 116 126)(112 122 117 127)(113 123 118 128)(114 124 119 129)(115 125 120 130)
(1 94 14 84)(2 95 15 85)(3 91 11 81)(4 92 12 82)(5 93 13 83)(6 96 16 86)(7 97 17 87)(8 98 18 88)(9 99 19 89)(10 100 20 90)(21 111 31 101)(22 112 32 102)(23 113 33 103)(24 114 34 104)(25 115 35 105)(26 116 36 106)(27 117 37 107)(28 118 38 108)(29 119 39 109)(30 120 40 110)(41 131 51 121)(42 132 52 122)(43 133 53 123)(44 134 54 124)(45 135 55 125)(46 136 56 126)(47 137 57 127)(48 138 58 128)(49 139 59 129)(50 140 60 130)(61 151 71 141)(62 152 72 142)(63 153 73 143)(64 154 74 144)(65 155 75 145)(66 156 76 146)(67 157 77 147)(68 158 78 148)(69 159 79 149)(70 160 80 150)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(21 26)(22 30)(23 29)(24 28)(25 27)(31 36)(32 40)(33 39)(34 38)(35 37)(41 56)(42 60)(43 59)(44 58)(45 57)(46 51)(47 55)(48 54)(49 53)(50 52)(61 71)(62 75)(63 74)(64 73)(65 72)(66 76)(67 80)(68 79)(69 78)(70 77)(81 116)(82 120)(83 119)(84 118)(85 117)(86 111)(87 115)(88 114)(89 113)(90 112)(91 106)(92 110)(93 109)(94 108)(95 107)(96 101)(97 105)(98 104)(99 103)(100 102)(121 146)(122 150)(123 149)(124 148)(125 147)(126 141)(127 145)(128 144)(129 143)(130 142)(131 156)(132 160)(133 159)(134 158)(135 157)(136 151)(137 155)(138 154)(139 153)(140 152)
G:=sub<Sym(160)| (1,29,9,24)(2,30,10,25)(3,26,6,21)(4,27,7,22)(5,28,8,23)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,61,46,66)(42,62,47,67)(43,63,48,68)(44,64,49,69)(45,65,50,70)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(81,101,86,106)(82,102,87,107)(83,103,88,108)(84,104,89,109)(85,105,90,110)(91,111,96,116)(92,112,97,117)(93,113,98,118)(94,114,99,119)(95,115,100,120)(121,146,126,141)(122,147,127,142)(123,148,128,143)(124,149,129,144)(125,150,130,145)(131,156,136,151)(132,157,137,152)(133,158,138,153)(134,159,139,154)(135,160,140,155), (1,59,9,54)(2,60,10,55)(3,56,6,51)(4,57,7,52)(5,58,8,53)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,76,26,71)(22,77,27,72)(23,78,28,73)(24,79,29,74)(25,80,30,75)(31,66,36,61)(32,67,37,62)(33,68,38,63)(34,69,39,64)(35,70,40,65)(81,156,86,151)(82,157,87,152)(83,158,88,153)(84,159,89,154)(85,160,90,155)(91,146,96,141)(92,147,97,142)(93,148,98,143)(94,149,99,144)(95,150,100,145)(101,131,106,136)(102,132,107,137)(103,133,108,138)(104,134,109,139)(105,135,110,140)(111,121,116,126)(112,122,117,127)(113,123,118,128)(114,124,119,129)(115,125,120,130), (1,94,14,84)(2,95,15,85)(3,91,11,81)(4,92,12,82)(5,93,13,83)(6,96,16,86)(7,97,17,87)(8,98,18,88)(9,99,19,89)(10,100,20,90)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,71)(62,75)(63,74)(64,73)(65,72)(66,76)(67,80)(68,79)(69,78)(70,77)(81,116)(82,120)(83,119)(84,118)(85,117)(86,111)(87,115)(88,114)(89,113)(90,112)(91,106)(92,110)(93,109)(94,108)(95,107)(96,101)(97,105)(98,104)(99,103)(100,102)(121,146)(122,150)(123,149)(124,148)(125,147)(126,141)(127,145)(128,144)(129,143)(130,142)(131,156)(132,160)(133,159)(134,158)(135,157)(136,151)(137,155)(138,154)(139,153)(140,152)>;
G:=Group( (1,29,9,24)(2,30,10,25)(3,26,6,21)(4,27,7,22)(5,28,8,23)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,61,46,66)(42,62,47,67)(43,63,48,68)(44,64,49,69)(45,65,50,70)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(81,101,86,106)(82,102,87,107)(83,103,88,108)(84,104,89,109)(85,105,90,110)(91,111,96,116)(92,112,97,117)(93,113,98,118)(94,114,99,119)(95,115,100,120)(121,146,126,141)(122,147,127,142)(123,148,128,143)(124,149,129,144)(125,150,130,145)(131,156,136,151)(132,157,137,152)(133,158,138,153)(134,159,139,154)(135,160,140,155), (1,59,9,54)(2,60,10,55)(3,56,6,51)(4,57,7,52)(5,58,8,53)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,76,26,71)(22,77,27,72)(23,78,28,73)(24,79,29,74)(25,80,30,75)(31,66,36,61)(32,67,37,62)(33,68,38,63)(34,69,39,64)(35,70,40,65)(81,156,86,151)(82,157,87,152)(83,158,88,153)(84,159,89,154)(85,160,90,155)(91,146,96,141)(92,147,97,142)(93,148,98,143)(94,149,99,144)(95,150,100,145)(101,131,106,136)(102,132,107,137)(103,133,108,138)(104,134,109,139)(105,135,110,140)(111,121,116,126)(112,122,117,127)(113,123,118,128)(114,124,119,129)(115,125,120,130), (1,94,14,84)(2,95,15,85)(3,91,11,81)(4,92,12,82)(5,93,13,83)(6,96,16,86)(7,97,17,87)(8,98,18,88)(9,99,19,89)(10,100,20,90)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,71)(62,75)(63,74)(64,73)(65,72)(66,76)(67,80)(68,79)(69,78)(70,77)(81,116)(82,120)(83,119)(84,118)(85,117)(86,111)(87,115)(88,114)(89,113)(90,112)(91,106)(92,110)(93,109)(94,108)(95,107)(96,101)(97,105)(98,104)(99,103)(100,102)(121,146)(122,150)(123,149)(124,148)(125,147)(126,141)(127,145)(128,144)(129,143)(130,142)(131,156)(132,160)(133,159)(134,158)(135,157)(136,151)(137,155)(138,154)(139,153)(140,152) );
G=PermutationGroup([[(1,29,9,24),(2,30,10,25),(3,26,6,21),(4,27,7,22),(5,28,8,23),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35),(41,61,46,66),(42,62,47,67),(43,63,48,68),(44,64,49,69),(45,65,50,70),(51,71,56,76),(52,72,57,77),(53,73,58,78),(54,74,59,79),(55,75,60,80),(81,101,86,106),(82,102,87,107),(83,103,88,108),(84,104,89,109),(85,105,90,110),(91,111,96,116),(92,112,97,117),(93,113,98,118),(94,114,99,119),(95,115,100,120),(121,146,126,141),(122,147,127,142),(123,148,128,143),(124,149,129,144),(125,150,130,145),(131,156,136,151),(132,157,137,152),(133,158,138,153),(134,159,139,154),(135,160,140,155)], [(1,59,9,54),(2,60,10,55),(3,56,6,51),(4,57,7,52),(5,58,8,53),(11,46,16,41),(12,47,17,42),(13,48,18,43),(14,49,19,44),(15,50,20,45),(21,76,26,71),(22,77,27,72),(23,78,28,73),(24,79,29,74),(25,80,30,75),(31,66,36,61),(32,67,37,62),(33,68,38,63),(34,69,39,64),(35,70,40,65),(81,156,86,151),(82,157,87,152),(83,158,88,153),(84,159,89,154),(85,160,90,155),(91,146,96,141),(92,147,97,142),(93,148,98,143),(94,149,99,144),(95,150,100,145),(101,131,106,136),(102,132,107,137),(103,133,108,138),(104,134,109,139),(105,135,110,140),(111,121,116,126),(112,122,117,127),(113,123,118,128),(114,124,119,129),(115,125,120,130)], [(1,94,14,84),(2,95,15,85),(3,91,11,81),(4,92,12,82),(5,93,13,83),(6,96,16,86),(7,97,17,87),(8,98,18,88),(9,99,19,89),(10,100,20,90),(21,111,31,101),(22,112,32,102),(23,113,33,103),(24,114,34,104),(25,115,35,105),(26,116,36,106),(27,117,37,107),(28,118,38,108),(29,119,39,109),(30,120,40,110),(41,131,51,121),(42,132,52,122),(43,133,53,123),(44,134,54,124),(45,135,55,125),(46,136,56,126),(47,137,57,127),(48,138,58,128),(49,139,59,129),(50,140,60,130),(61,151,71,141),(62,152,72,142),(63,153,73,143),(64,154,74,144),(65,155,75,145),(66,156,76,146),(67,157,77,147),(68,158,78,148),(69,159,79,149),(70,160,80,150)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(21,26),(22,30),(23,29),(24,28),(25,27),(31,36),(32,40),(33,39),(34,38),(35,37),(41,56),(42,60),(43,59),(44,58),(45,57),(46,51),(47,55),(48,54),(49,53),(50,52),(61,71),(62,75),(63,74),(64,73),(65,72),(66,76),(67,80),(68,79),(69,78),(70,77),(81,116),(82,120),(83,119),(84,118),(85,117),(86,111),(87,115),(88,114),(89,113),(90,112),(91,106),(92,110),(93,109),(94,108),(95,107),(96,101),(97,105),(98,104),(99,103),(100,102),(121,146),(122,150),(123,149),(124,148),(125,147),(126,141),(127,145),(128,144),(129,143),(130,142),(131,156),(132,160),(133,159),(134,158),(135,157),(136,151),(137,155),(138,154),(139,153),(140,152)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 20A | 20B | 20C | 20D | 20E | ··· | 20L | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 40 | 2 | 2 | 8 | 8 | 20 | 20 | 40 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | C4○D4 | D10 | D10 | D10 | C4○D20 | C8⋊C22 | C8.C22 | D4⋊2D5 | D4×D5 | D40⋊C2 | Q16⋊D5 |
kernel | Q8⋊C4⋊D5 | D20⋊6C4 | C40⋊8C4 | D20⋊5C4 | Q8⋊Dic5 | C5×Q8⋊C4 | C20⋊Q8 | C20.23D4 | C2×Dic5 | Q8⋊C4 | C20 | C4⋊C4 | C2×C8 | C2×Q8 | C4 | C10 | C10 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of Q8⋊C4⋊D5 ►in GL8(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
24 | 1 | 3 | 18 | 0 | 0 | 0 | 0 |
40 | 17 | 5 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
31 | 0 | 15 | 3 | 0 | 0 | 0 | 0 |
0 | 31 | 0 | 38 | 0 | 0 | 0 | 0 |
37 | 37 | 10 | 0 | 0 | 0 | 0 | 0 |
0 | 20 | 0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 33 | 8 | 30 | 11 |
0 | 0 | 0 | 0 | 8 | 8 | 30 | 30 |
0 | 0 | 0 | 0 | 30 | 30 | 33 | 33 |
0 | 0 | 0 | 0 | 11 | 30 | 33 | 8 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 34 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 35 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0],[24,40,0,0,0,0,0,0,1,17,0,0,0,0,0,0,3,5,18,36,0,0,0,0,18,18,40,23,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[31,0,37,0,0,0,0,0,0,31,37,20,0,0,0,0,15,0,10,0,0,0,0,0,3,38,0,10,0,0,0,0,0,0,0,0,33,8,30,11,0,0,0,0,8,8,30,30,0,0,0,0,30,30,33,33,0,0,0,0,11,30,33,8],[0,40,0,0,0,0,0,0,1,34,0,0,0,0,0,0,0,0,40,5,0,0,0,0,0,0,1,35,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,36,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1] >;
Q8⋊C4⋊D5 in GAP, Magma, Sage, TeX
Q_8\rtimes C_4\rtimes D_5
% in TeX
G:=Group("Q8:C4:D5");
// GroupNames label
G:=SmallGroup(320,422);
// by ID
G=gap.SmallGroup(320,422);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,253,120,1094,135,184,570,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=c^4=d^5=e^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=e*a*e=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,b*d=d*b,e*b*e=a^2*b*c^2,c*d=d*c,e*c*e=a*c^-1,e*d*e=d^-1>;
// generators/relations