Copied to
clipboard

?

G = C2×D8⋊S3order 192 = 26·3

Direct product of C2 and D8⋊S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D8⋊S3, D89D6, C245C23, C12.2C24, Dic61C23, D12.1C23, (C2×C8)⋊8D6, C3⋊C81C23, (C2×D4)⋊28D6, (C2×D8)⋊11S3, (C6×D8)⋊11C2, C83(C22×S3), C4.40(S3×D4), C62(C8⋊C22), D4⋊S39C22, (C4×S3).14D4, D6.49(C2×D4), C12.77(C2×D4), (C3×D4)⋊2C23, D42(C22×S3), (S3×D4)⋊5C22, C4.2(S3×C23), (C2×C24)⋊16C22, (C3×D8)⋊14C22, (C6×D4)⋊19C22, (C4×S3).1C23, D4.S37C22, C8⋊S312C22, C24⋊C213C22, D42S35C22, Dic3.54(C2×D4), (C22×S3).97D4, C6.103(C22×D4), C22.136(S3×D4), (C2×C12).519C23, (C2×Dic3).191D4, (C2×Dic6)⋊36C22, (C2×D12).176C22, (C2×S3×D4)⋊22C2, C32(C2×C8⋊C22), C2.76(C2×S3×D4), (C2×C8⋊S3)⋊8C2, (C2×D4⋊S3)⋊26C2, (C2×C3⋊C8)⋊14C22, (C2×C24⋊C2)⋊24C2, (C2×D4.S3)⋊25C2, (C2×C6).392(C2×D4), (C2×D42S3)⋊23C2, (S3×C2×C4).155C22, (C2×C4).609(C22×S3), SmallGroup(192,1314)

Series: Derived Chief Lower central Upper central

C1C12 — C2×D8⋊S3
C1C3C6C12C4×S3S3×C2×C4C2×S3×D4 — C2×D8⋊S3
C3C6C12 — C2×D8⋊S3

Subgroups: 920 in 298 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2 [×2], C2 [×8], C3, C4 [×2], C4 [×4], C22, C22 [×24], S3 [×4], C6, C6 [×2], C6 [×4], C8 [×2], C8 [×2], C2×C4, C2×C4 [×10], D4 [×4], D4 [×13], Q8 [×3], C23 [×12], Dic3 [×2], Dic3 [×2], C12 [×2], D6 [×2], D6 [×14], C2×C6, C2×C6 [×8], C2×C8, C2×C8, M4(2) [×4], D8 [×4], D8 [×4], SD16 [×8], C22×C4 [×2], C2×D4 [×2], C2×D4 [×9], C2×Q8, C4○D4 [×6], C24, C3⋊C8 [×2], C24 [×2], Dic6 [×2], Dic6, C4×S3 [×4], D12 [×2], D12, C2×Dic3, C2×Dic3 [×5], C3⋊D4 [×8], C2×C12, C3×D4 [×4], C3×D4 [×2], C22×S3, C22×S3 [×9], C22×C6 [×2], C2×M4(2), C2×D8, C2×D8, C2×SD16 [×2], C8⋊C22 [×8], C22×D4, C2×C4○D4, C8⋊S3 [×4], C24⋊C2 [×4], C2×C3⋊C8, D4⋊S3 [×4], D4.S3 [×4], C2×C24, C3×D8 [×4], C2×Dic6, S3×C2×C4, C2×D12, S3×D4 [×4], S3×D4 [×2], D42S3 [×4], D42S3 [×2], C22×Dic3, C2×C3⋊D4 [×2], C6×D4 [×2], S3×C23, C2×C8⋊C22, C2×C8⋊S3, C2×C24⋊C2, D8⋊S3 [×8], C2×D4⋊S3, C2×D4.S3, C6×D8, C2×S3×D4, C2×D42S3, C2×D8⋊S3

Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C24, C22×S3 [×7], C8⋊C22 [×2], C22×D4, S3×D4 [×2], S3×C23, C2×C8⋊C22, D8⋊S3 [×2], C2×S3×D4, C2×D8⋊S3

Generators and relations
 G = < a,b,c,d,e | a2=b8=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe=b5, cd=dc, ce=ec, ede=d-1 >

Smallest permutation representation
On 48 points
Generators in S48
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 48)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(25 40)(26 33)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 7)(2 6)(3 5)(9 15)(10 14)(11 13)(18 24)(19 23)(20 22)(25 27)(28 32)(29 31)(34 40)(35 39)(36 38)(41 45)(42 44)(46 48)
(1 34 13)(2 35 14)(3 36 15)(4 37 16)(5 38 9)(6 39 10)(7 40 11)(8 33 12)(17 30 47)(18 31 48)(19 32 41)(20 25 42)(21 26 43)(22 27 44)(23 28 45)(24 29 46)
(1 18)(2 23)(3 20)(4 17)(5 22)(6 19)(7 24)(8 21)(9 27)(10 32)(11 29)(12 26)(13 31)(14 28)(15 25)(16 30)(33 43)(34 48)(35 45)(36 42)(37 47)(38 44)(39 41)(40 46)

G:=sub<Sym(48)| (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,7)(2,6)(3,5)(9,15)(10,14)(11,13)(18,24)(19,23)(20,22)(25,27)(28,32)(29,31)(34,40)(35,39)(36,38)(41,45)(42,44)(46,48), (1,34,13)(2,35,14)(3,36,15)(4,37,16)(5,38,9)(6,39,10)(7,40,11)(8,33,12)(17,30,47)(18,31,48)(19,32,41)(20,25,42)(21,26,43)(22,27,44)(23,28,45)(24,29,46), (1,18)(2,23)(3,20)(4,17)(5,22)(6,19)(7,24)(8,21)(9,27)(10,32)(11,29)(12,26)(13,31)(14,28)(15,25)(16,30)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46)>;

G:=Group( (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,7)(2,6)(3,5)(9,15)(10,14)(11,13)(18,24)(19,23)(20,22)(25,27)(28,32)(29,31)(34,40)(35,39)(36,38)(41,45)(42,44)(46,48), (1,34,13)(2,35,14)(3,36,15)(4,37,16)(5,38,9)(6,39,10)(7,40,11)(8,33,12)(17,30,47)(18,31,48)(19,32,41)(20,25,42)(21,26,43)(22,27,44)(23,28,45)(24,29,46), (1,18)(2,23)(3,20)(4,17)(5,22)(6,19)(7,24)(8,21)(9,27)(10,32)(11,29)(12,26)(13,31)(14,28)(15,25)(16,30)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46) );

G=PermutationGroup([(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,48),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(25,40),(26,33),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,7),(2,6),(3,5),(9,15),(10,14),(11,13),(18,24),(19,23),(20,22),(25,27),(28,32),(29,31),(34,40),(35,39),(36,38),(41,45),(42,44),(46,48)], [(1,34,13),(2,35,14),(3,36,15),(4,37,16),(5,38,9),(6,39,10),(7,40,11),(8,33,12),(17,30,47),(18,31,48),(19,32,41),(20,25,42),(21,26,43),(22,27,44),(23,28,45),(24,29,46)], [(1,18),(2,23),(3,20),(4,17),(5,22),(6,19),(7,24),(8,21),(9,27),(10,32),(11,29),(12,26),(13,31),(14,28),(15,25),(16,30),(33,43),(34,48),(35,45),(36,42),(37,47),(38,44),(39,41),(40,46)])

Matrix representation G ⊆ GL6(𝔽73)

7200000
0720000
0072000
0007200
0000720
0000072
,
120000
72720000
00003162
00001142
0011221122
0051625162
,
7200000
110000
001000
000100
00710720
00071072
,
100000
010000
000100
00727200
000001
00007272
,
100000
010000
000100
001000
000001
000010

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,72,0,0,0,0,2,72,0,0,0,0,0,0,0,0,11,51,0,0,0,0,22,62,0,0,31,11,11,51,0,0,62,42,22,62],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,71,0,0,0,0,1,0,71,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F6A6B6C6D6E6F6G8A8B8C8D12A12B24A24B24C24D
order122222222222344444466666668888121224242424
size111144446612122226612122228888441212444444

36 irreducible representations

dim11111111122222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2S3D4D4D4D6D6D6C8⋊C22S3×D4S3×D4D8⋊S3
kernelC2×D8⋊S3C2×C8⋊S3C2×C24⋊C2D8⋊S3C2×D4⋊S3C2×D4.S3C6×D8C2×S3×D4C2×D42S3C2×D8C4×S3C2×Dic3C22×S3C2×C8D8C2×D4C6C4C22C2
# reps11181111112111422114

In GAP, Magma, Sage, TeX

C_2\times D_8\rtimes S_3
% in TeX

G:=Group("C2xD8:S3");
// GroupNames label

G:=SmallGroup(192,1314);
// by ID

G=gap.SmallGroup(192,1314);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,1123,185,438,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e=b^5,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽