direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Q8⋊3D6, C24⋊4C23, SD16⋊8D6, D12⋊2C23, C12.6C24, D24⋊20C22, (C2×C8)⋊10D6, C3⋊C8⋊2C23, C8⋊4(C22×S3), (C2×Q8)⋊24D6, C4.43(S3×D4), (C2×D24)⋊26C2, C6⋊3(C8⋊C22), (C6×SD16)⋊5C2, (C2×SD16)⋊4S3, (C4×S3).15D4, D6.50(C2×D4), C12.81(C2×D4), (S3×D4)⋊6C22, C4.6(S3×C23), (C3×Q8)⋊2C23, Q8⋊3(C22×S3), (C2×C24)⋊13C22, C8⋊S3⋊8C22, D4⋊S3⋊10C22, (C2×D4).182D6, (C4×S3).3C23, (C6×Q8)⋊18C22, (C3×D4).4C23, D4.4(C22×S3), (C2×D12)⋊33C22, Dic3.55(C2×D4), Q8⋊2S3⋊8C22, Q8⋊3S3⋊5C22, (C3×SD16)⋊8C22, (C22×S3).98D4, C22.139(S3×D4), C6.107(C22×D4), (C2×C12).523C23, (C2×Dic3).192D4, (C6×D4).164C22, (C2×S3×D4)⋊23C2, C3⋊3(C2×C8⋊C22), C2.80(C2×S3×D4), (C2×C8⋊S3)⋊4C2, (C2×D4⋊S3)⋊27C2, (C2×C3⋊C8)⋊15C22, (C2×C6).396(C2×D4), (C2×Q8⋊3S3)⋊14C2, (C2×Q8⋊2S3)⋊26C2, (S3×C2×C4).156C22, (C2×C4).612(C22×S3), SmallGroup(192,1318)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 952 in 298 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2 [×2], C2 [×8], C3, C4 [×2], C4 [×4], C22, C22 [×24], S3 [×6], C6, C6 [×2], C6 [×2], C8 [×2], C8 [×2], C2×C4, C2×C4 [×10], D4 [×2], D4 [×15], Q8 [×2], Q8, C23 [×12], Dic3 [×2], C12 [×2], C12 [×2], D6 [×2], D6 [×18], C2×C6, C2×C6 [×4], C2×C8, C2×C8, M4(2) [×4], D8 [×8], SD16 [×4], SD16 [×4], C22×C4 [×2], C2×D4, C2×D4 [×10], C2×Q8, C4○D4 [×6], C24, C3⋊C8 [×2], C24 [×2], C4×S3 [×4], C4×S3 [×4], D12 [×4], D12 [×6], C2×Dic3, C3⋊D4 [×4], C2×C12, C2×C12, C3×D4 [×2], C3×D4, C3×Q8 [×2], C3×Q8, C22×S3, C22×S3 [×10], C22×C6, C2×M4(2), C2×D8 [×2], C2×SD16, C2×SD16, C8⋊C22 [×8], C22×D4, C2×C4○D4, C8⋊S3 [×4], D24 [×4], C2×C3⋊C8, D4⋊S3 [×4], Q8⋊2S3 [×4], C2×C24, C3×SD16 [×4], S3×C2×C4, S3×C2×C4, C2×D12 [×2], C2×D12, S3×D4 [×4], S3×D4 [×2], Q8⋊3S3 [×4], Q8⋊3S3 [×2], C2×C3⋊D4, C6×D4, C6×Q8, S3×C23, C2×C8⋊C22, C2×C8⋊S3, C2×D24, Q8⋊3D6 [×8], C2×D4⋊S3, C2×Q8⋊2S3, C6×SD16, C2×S3×D4, C2×Q8⋊3S3, C2×Q8⋊3D6
Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C24, C22×S3 [×7], C8⋊C22 [×2], C22×D4, S3×D4 [×2], S3×C23, C2×C8⋊C22, Q8⋊3D6 [×2], C2×S3×D4, C2×Q8⋊3D6
Generators and relations
G = < a,b,c,d,e | a2=b4=d6=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=dbd-1=ebe=b-1, dcd-1=b-1c, ece=bc, ede=d-1 >
(1 12)(2 10)(3 11)(4 7)(5 8)(6 9)(13 24)(14 19)(15 20)(16 21)(17 22)(18 23)(25 38)(26 39)(27 40)(28 41)(29 42)(30 37)(31 47)(32 48)(33 43)(34 44)(35 45)(36 46)
(1 20 5 23)(2 24 6 21)(3 22 4 19)(7 14 11 17)(8 18 12 15)(9 16 10 13)(25 35 32 28)(26 29 33 36)(27 31 34 30)(37 40 47 44)(38 45 48 41)(39 42 43 46)
(1 35 5 28)(2 33 6 26)(3 31 4 30)(7 37 11 47)(8 41 12 45)(9 39 10 43)(13 42 16 46)(14 44 17 40)(15 38 18 48)(19 34 22 27)(20 25 23 32)(21 36 24 29)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 3)(4 5)(7 8)(11 12)(13 16)(14 15)(17 18)(19 20)(21 24)(22 23)(25 31)(26 36)(27 35)(28 34)(29 33)(30 32)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)
G:=sub<Sym(48)| (1,12)(2,10)(3,11)(4,7)(5,8)(6,9)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23)(25,38)(26,39)(27,40)(28,41)(29,42)(30,37)(31,47)(32,48)(33,43)(34,44)(35,45)(36,46), (1,20,5,23)(2,24,6,21)(3,22,4,19)(7,14,11,17)(8,18,12,15)(9,16,10,13)(25,35,32,28)(26,29,33,36)(27,31,34,30)(37,40,47,44)(38,45,48,41)(39,42,43,46), (1,35,5,28)(2,33,6,26)(3,31,4,30)(7,37,11,47)(8,41,12,45)(9,39,10,43)(13,42,16,46)(14,44,17,40)(15,38,18,48)(19,34,22,27)(20,25,23,32)(21,36,24,29), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,3)(4,5)(7,8)(11,12)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,31)(26,36)(27,35)(28,34)(29,33)(30,32)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)>;
G:=Group( (1,12)(2,10)(3,11)(4,7)(5,8)(6,9)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23)(25,38)(26,39)(27,40)(28,41)(29,42)(30,37)(31,47)(32,48)(33,43)(34,44)(35,45)(36,46), (1,20,5,23)(2,24,6,21)(3,22,4,19)(7,14,11,17)(8,18,12,15)(9,16,10,13)(25,35,32,28)(26,29,33,36)(27,31,34,30)(37,40,47,44)(38,45,48,41)(39,42,43,46), (1,35,5,28)(2,33,6,26)(3,31,4,30)(7,37,11,47)(8,41,12,45)(9,39,10,43)(13,42,16,46)(14,44,17,40)(15,38,18,48)(19,34,22,27)(20,25,23,32)(21,36,24,29), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,3)(4,5)(7,8)(11,12)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,31)(26,36)(27,35)(28,34)(29,33)(30,32)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43) );
G=PermutationGroup([(1,12),(2,10),(3,11),(4,7),(5,8),(6,9),(13,24),(14,19),(15,20),(16,21),(17,22),(18,23),(25,38),(26,39),(27,40),(28,41),(29,42),(30,37),(31,47),(32,48),(33,43),(34,44),(35,45),(36,46)], [(1,20,5,23),(2,24,6,21),(3,22,4,19),(7,14,11,17),(8,18,12,15),(9,16,10,13),(25,35,32,28),(26,29,33,36),(27,31,34,30),(37,40,47,44),(38,45,48,41),(39,42,43,46)], [(1,35,5,28),(2,33,6,26),(3,31,4,30),(7,37,11,47),(8,41,12,45),(9,39,10,43),(13,42,16,46),(14,44,17,40),(15,38,18,48),(19,34,22,27),(20,25,23,32),(21,36,24,29)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,3),(4,5),(7,8),(11,12),(13,16),(14,15),(17,18),(19,20),(21,24),(22,23),(25,31),(26,36),(27,35),(28,34),(29,33),(30,32),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43)])
Matrix representation ►G ⊆ GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 72 | 72 | 71 | 72 |
0 | 0 | 25 | 25 | 1 | 0 |
0 | 0 | 24 | 25 | 1 | 0 |
72 | 70 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 39 | 10 | 44 | 44 |
0 | 0 | 34 | 5 | 0 | 44 |
0 | 0 | 68 | 68 | 68 | 63 |
0 | 0 | 39 | 68 | 39 | 34 |
72 | 0 | 0 | 0 | 0 | 0 |
25 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 72 | 0 | 0 | 72 |
0 | 0 | 0 | 72 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
48 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 72 | 72 | 72 | 71 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,25,24,0,0,0,72,25,25,0,0,72,71,1,1,0,0,1,72,0,0],[72,0,0,0,0,0,70,1,0,0,0,0,0,0,39,34,68,39,0,0,10,5,68,68,0,0,44,0,68,39,0,0,44,44,63,34],[72,25,0,0,0,0,0,1,0,0,0,0,0,0,1,0,72,0,0,0,1,0,0,72,0,0,1,72,0,0,0,0,2,1,72,72],[1,48,0,0,0,0,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,72,71,1,1] >;
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 6 | 6 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 2 | 2 | 2 | 8 | 8 | 4 | 4 | 12 | 12 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D4 | D6 | D6 | D6 | D6 | C8⋊C22 | S3×D4 | S3×D4 | Q8⋊3D6 |
kernel | C2×Q8⋊3D6 | C2×C8⋊S3 | C2×D24 | Q8⋊3D6 | C2×D4⋊S3 | C2×Q8⋊2S3 | C6×SD16 | C2×S3×D4 | C2×Q8⋊3S3 | C2×SD16 | C4×S3 | C2×Dic3 | C22×S3 | C2×C8 | SD16 | C2×D4 | C2×Q8 | C6 | C4 | C22 | C2 |
# reps | 1 | 1 | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 1 | 1 | 4 |
In GAP, Magma, Sage, TeX
C_2\times Q_8\rtimes_3D_6
% in TeX
G:=Group("C2xQ8:3D6");
// GroupNames label
G:=SmallGroup(192,1318);
// by ID
G=gap.SmallGroup(192,1318);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,1123,185,136,438,235,102,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=d^6=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=d*b*d^-1=e*b*e=b^-1,d*c*d^-1=b^-1*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations