Copied to
clipboard

## G = C62.47C23order 288 = 25·32

### 42nd non-split extension by C62 of C23 acting via C23/C2=C22

Series: Derived Chief Lower central Upper central

 Derived series C1 — C3×C6 — C62.47C23
 Chief series C1 — C3 — C32 — C3×C6 — C62 — S3×C2×C6 — C2×S3×Dic3 — C62.47C23
 Lower central C32 — C3×C6 — C62.47C23
 Upper central C1 — C22 — C2×C4

Generators and relations for C62.47C23
G = < a,b,c,d,e | a6=b6=c2=1, d2=b3, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, de=ed >

Subgroups: 522 in 165 conjugacy classes, 58 normal (44 characteristic)
C1, C2 [×3], C2 [×2], C3 [×2], C3, C4 [×8], C22, C22 [×4], S3 [×2], C6 [×6], C6 [×5], C2×C4, C2×C4 [×9], C23, C32, Dic3 [×2], Dic3 [×11], C12 [×7], D6 [×2], D6 [×2], C2×C6 [×2], C2×C6 [×5], C42 [×2], C22⋊C4 [×2], C4⋊C4 [×2], C22×C4, C3×S3 [×2], C3×C6 [×3], C4×S3 [×4], C2×Dic3 [×3], C2×Dic3 [×10], C2×C12 [×2], C2×C12 [×4], C22×S3, C22×C6, C42⋊C2, C3×Dic3 [×2], C3×Dic3 [×2], C3⋊Dic3 [×2], C3⋊Dic3, C3×C12, S3×C6 [×2], S3×C6 [×2], C62, C4×Dic3, C4×Dic3 [×2], Dic3⋊C4 [×5], D6⋊C4, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, S3×C2×C4, C22×Dic3, S3×Dic3 [×4], C6×Dic3 [×3], C2×C3⋊Dic3 [×2], C6×C12, S3×C2×C6, C422S3, C23.16D6, Dic32, D6⋊Dic3, C62.C22, Dic3×C12, C3×D6⋊C4, C6.Dic6, C2×S3×Dic3, C62.47C23
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], S3 [×2], C2×C4 [×6], C23, D6 [×6], C22×C4, C4○D4 [×2], C4×S3 [×4], C22×S3 [×2], C42⋊C2, S32, S3×C2×C4 [×2], C4○D12 [×2], D42S3 [×2], C2×S32, C422S3, C23.16D6, D125S3, C4×S32, D6.3D6, C62.47C23

Smallest permutation representation of C62.47C23
On 96 points
Generators in S96
```(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 93 11 91 9 95)(8 94 12 92 10 96)(19 28 23 26 21 30)(20 29 24 27 22 25)(31 42 33 38 35 40)(32 37 34 39 36 41)(43 49 45 51 47 53)(44 50 46 52 48 54)(55 61 57 63 59 65)(56 62 58 64 60 66)(67 78 69 74 71 76)(68 73 70 75 72 77)(79 88 83 86 81 90)(80 89 84 87 82 85)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 55)(7 51)(8 52)(9 53)(10 54)(11 49)(12 50)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)
(1 41 16 34)(2 40 17 33)(3 39 18 32)(4 38 13 31)(5 37 14 36)(6 42 15 35)(7 78 91 71)(8 77 92 70)(9 76 93 69)(10 75 94 68)(11 74 95 67)(12 73 96 72)(19 49 26 47)(20 54 27 46)(21 53 28 45)(22 52 29 44)(23 51 30 43)(24 50 25 48)(55 90 63 83)(56 89 64 82)(57 88 65 81)(58 87 66 80)(59 86 61 79)(60 85 62 84)
(1 23 4 20)(2 24 5 21)(3 19 6 22)(7 79 10 82)(8 80 11 83)(9 81 12 84)(13 27 16 30)(14 28 17 25)(15 29 18 26)(31 46 34 43)(32 47 35 44)(33 48 36 45)(37 53 40 50)(38 54 41 51)(39 49 42 52)(55 77 58 74)(56 78 59 75)(57 73 60 76)(61 68 64 71)(62 69 65 72)(63 70 66 67)(85 93 88 96)(86 94 89 91)(87 95 90 92)```

`G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,56)(2,57)(3,58)(4,59)(5,60)(6,55)(7,51)(8,52)(9,53)(10,54)(11,49)(12,50)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96), (1,41,16,34)(2,40,17,33)(3,39,18,32)(4,38,13,31)(5,37,14,36)(6,42,15,35)(7,78,91,71)(8,77,92,70)(9,76,93,69)(10,75,94,68)(11,74,95,67)(12,73,96,72)(19,49,26,47)(20,54,27,46)(21,53,28,45)(22,52,29,44)(23,51,30,43)(24,50,25,48)(55,90,63,83)(56,89,64,82)(57,88,65,81)(58,87,66,80)(59,86,61,79)(60,85,62,84), (1,23,4,20)(2,24,5,21)(3,19,6,22)(7,79,10,82)(8,80,11,83)(9,81,12,84)(13,27,16,30)(14,28,17,25)(15,29,18,26)(31,46,34,43)(32,47,35,44)(33,48,36,45)(37,53,40,50)(38,54,41,51)(39,49,42,52)(55,77,58,74)(56,78,59,75)(57,73,60,76)(61,68,64,71)(62,69,65,72)(63,70,66,67)(85,93,88,96)(86,94,89,91)(87,95,90,92)>;`

`G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,56)(2,57)(3,58)(4,59)(5,60)(6,55)(7,51)(8,52)(9,53)(10,54)(11,49)(12,50)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96), (1,41,16,34)(2,40,17,33)(3,39,18,32)(4,38,13,31)(5,37,14,36)(6,42,15,35)(7,78,91,71)(8,77,92,70)(9,76,93,69)(10,75,94,68)(11,74,95,67)(12,73,96,72)(19,49,26,47)(20,54,27,46)(21,53,28,45)(22,52,29,44)(23,51,30,43)(24,50,25,48)(55,90,63,83)(56,89,64,82)(57,88,65,81)(58,87,66,80)(59,86,61,79)(60,85,62,84), (1,23,4,20)(2,24,5,21)(3,19,6,22)(7,79,10,82)(8,80,11,83)(9,81,12,84)(13,27,16,30)(14,28,17,25)(15,29,18,26)(31,46,34,43)(32,47,35,44)(33,48,36,45)(37,53,40,50)(38,54,41,51)(39,49,42,52)(55,77,58,74)(56,78,59,75)(57,73,60,76)(61,68,64,71)(62,69,65,72)(63,70,66,67)(85,93,88,96)(86,94,89,91)(87,95,90,92) );`

`G=PermutationGroup([(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,93,11,91,9,95),(8,94,12,92,10,96),(19,28,23,26,21,30),(20,29,24,27,22,25),(31,42,33,38,35,40),(32,37,34,39,36,41),(43,49,45,51,47,53),(44,50,46,52,48,54),(55,61,57,63,59,65),(56,62,58,64,60,66),(67,78,69,74,71,76),(68,73,70,75,72,77),(79,88,83,86,81,90),(80,89,84,87,82,85)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,55),(7,51),(8,52),(9,53),(10,54),(11,49),(12,50),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96)], [(1,41,16,34),(2,40,17,33),(3,39,18,32),(4,38,13,31),(5,37,14,36),(6,42,15,35),(7,78,91,71),(8,77,92,70),(9,76,93,69),(10,75,94,68),(11,74,95,67),(12,73,96,72),(19,49,26,47),(20,54,27,46),(21,53,28,45),(22,52,29,44),(23,51,30,43),(24,50,25,48),(55,90,63,83),(56,89,64,82),(57,88,65,81),(58,87,66,80),(59,86,61,79),(60,85,62,84)], [(1,23,4,20),(2,24,5,21),(3,19,6,22),(7,79,10,82),(8,80,11,83),(9,81,12,84),(13,27,16,30),(14,28,17,25),(15,29,18,26),(31,46,34,43),(32,47,35,44),(33,48,36,45),(37,53,40,50),(38,54,41,51),(39,49,42,52),(55,77,58,74),(56,78,59,75),(57,73,60,76),(61,68,64,71),(62,69,65,72),(63,70,66,67),(85,93,88,96),(86,94,89,91),(87,95,90,92)])`

54 conjugacy classes

 class 1 2A 2B 2C 2D 2E 3A 3B 3C 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 4N 6A ··· 6F 6G 6H 6I 6J 6K 12A 12B 12C 12D 12E ··· 12J 12K ··· 12R 12S 12T order 1 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 ··· 6 6 6 6 6 6 12 12 12 12 12 ··· 12 12 ··· 12 12 12 size 1 1 1 1 6 6 2 2 4 2 2 3 3 3 3 6 6 6 6 18 18 18 18 2 ··· 2 4 4 4 12 12 2 2 2 2 4 ··· 4 6 ··· 6 12 12

54 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 type + + + + + + + + + + + + + + - + - image C1 C2 C2 C2 C2 C2 C2 C2 C4 S3 S3 D6 D6 D6 C4○D4 C4×S3 C4×S3 C4○D12 S32 D4⋊2S3 C2×S32 D12⋊5S3 C4×S32 D6.3D6 kernel C62.47C23 Dic32 D6⋊Dic3 C62.C22 Dic3×C12 C3×D6⋊C4 C6.Dic6 C2×S3×Dic3 S3×Dic3 C4×Dic3 D6⋊C4 C2×Dic3 C2×C12 C22×S3 C3×C6 Dic3 D6 C6 C2×C4 C6 C22 C2 C2 C2 # reps 1 1 1 1 1 1 1 1 8 1 1 3 2 1 4 4 4 8 1 2 1 2 2 2

Matrix representation of C62.47C23 in GL6(𝔽13)

 1 0 0 0 0 0 0 1 0 0 0 0 0 0 12 0 0 0 0 0 0 12 0 0 0 0 0 0 0 1 0 0 0 0 12 12
,
 12 0 0 0 0 0 0 12 0 0 0 0 0 0 12 1 0 0 0 0 12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
,
 2 4 0 0 0 0 9 11 0 0 0 0 0 0 12 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
,
 8 0 0 0 0 0 0 8 0 0 0 0 0 0 12 0 0 0 0 0 0 12 0 0 0 0 0 0 1 0 0 0 0 0 12 12
,
 0 1 0 0 0 0 1 0 0 0 0 0 0 0 5 0 0 0 0 0 0 5 0 0 0 0 0 0 1 0 0 0 0 0 0 1

`G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,9,0,0,0,0,4,11,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;`

C62.47C23 in GAP, Magma, Sage, TeX

`C_6^2._{47}C_2^3`
`% in TeX`

`G:=Group("C6^2.47C2^3");`
`// GroupNames label`

`G:=SmallGroup(288,525);`
`// by ID`

`G=gap.SmallGroup(288,525);`
`# by ID`

`G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,422,58,1356,9414]);`
`// Polycyclic`

`G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=b^3,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,d*e=e*d>;`
`// generators/relations`

׿
×
𝔽