Copied to
clipboard

G = Dic5.C24order 320 = 26·5

18th non-split extension by Dic5 of C24 acting via C24/C23=C2

Series: Derived Chief Lower central Upper central

 Derived series C1 — C10 — Dic5.C24
 Chief series C1 — C5 — C10 — Dic5 — C5⋊C8 — C2×C5⋊C8 — D4.F5 — Dic5.C24
 Lower central C5 — C10 — Dic5.C24
 Upper central C1 — C2 — C2×D4

Generators and relations for Dic5.C24
G = < a,b,c,d,e,f | a10=d2=e2=f2=1, b2=a5, c2=b, bab-1=a-1, cac-1=a3, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf=a5c, ede=a5d, df=fd, ef=fe >

Subgroups: 730 in 258 conjugacy classes, 136 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, D5, C10, C10, C2×C8, M4(2), C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×M4(2), C8○D4, C2×C4○D4, C5⋊C8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, Q8○M4(2), D5⋊C8, C4.F5, C2×C5⋊C8, C22.F5, C2×Dic10, C2×C4×D5, D42D5, C22×Dic5, C2×C5⋊D4, D4×C10, D5⋊M4(2), D4.F5, C2×C22.F5, C2×D42D5, Dic5.C24
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, F5, C23×C4, C2×F5, Q8○M4(2), C22×F5, C23×F5, Dic5.C24

Smallest permutation representation of Dic5.C24
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 16 6 11)(2 15 7 20)(3 14 8 19)(4 13 9 18)(5 12 10 17)(21 34 26 39)(22 33 27 38)(23 32 28 37)(24 31 29 36)(25 40 30 35)(41 54 46 59)(42 53 47 58)(43 52 48 57)(44 51 49 56)(45 60 50 55)(61 74 66 79)(62 73 67 78)(63 72 68 77)(64 71 69 76)(65 80 70 75)
(1 58 16 42 6 53 11 47)(2 55 15 45 7 60 20 50)(3 52 14 48 8 57 19 43)(4 59 13 41 9 54 18 46)(5 56 12 44 10 51 17 49)(21 72 34 68 26 77 39 63)(22 79 33 61 27 74 38 66)(23 76 32 64 28 71 37 69)(24 73 31 67 29 78 36 62)(25 80 40 70 30 75 35 65)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 24)(12 25)(13 26)(14 27)(15 28)(16 29)(17 30)(18 21)(19 22)(20 23)(41 77)(42 78)(43 79)(44 80)(45 71)(46 72)(47 73)(48 74)(49 75)(50 76)(51 70)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)
(1 29)(2 30)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,16,6,11)(2,15,7,20)(3,14,8,19)(4,13,9,18)(5,12,10,17)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,40,30,35)(41,54,46,59)(42,53,47,58)(43,52,48,57)(44,51,49,56)(45,60,50,55)(61,74,66,79)(62,73,67,78)(63,72,68,77)(64,71,69,76)(65,80,70,75), (1,58,16,42,6,53,11,47)(2,55,15,45,7,60,20,50)(3,52,14,48,8,57,19,43)(4,59,13,41,9,54,18,46)(5,56,12,44,10,51,17,49)(21,72,34,68,26,77,39,63)(22,79,33,61,27,74,38,66)(23,76,32,64,28,71,37,69)(24,73,31,67,29,78,36,62)(25,80,40,70,30,75,35,65), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,21)(19,22)(20,23)(41,77)(42,78)(43,79)(44,80)(45,71)(46,72)(47,73)(48,74)(49,75)(50,76)(51,70)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69), (1,29)(2,30)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,16,6,11)(2,15,7,20)(3,14,8,19)(4,13,9,18)(5,12,10,17)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,40,30,35)(41,54,46,59)(42,53,47,58)(43,52,48,57)(44,51,49,56)(45,60,50,55)(61,74,66,79)(62,73,67,78)(63,72,68,77)(64,71,69,76)(65,80,70,75), (1,58,16,42,6,53,11,47)(2,55,15,45,7,60,20,50)(3,52,14,48,8,57,19,43)(4,59,13,41,9,54,18,46)(5,56,12,44,10,51,17,49)(21,72,34,68,26,77,39,63)(22,79,33,61,27,74,38,66)(23,76,32,64,28,71,37,69)(24,73,31,67,29,78,36,62)(25,80,40,70,30,75,35,65), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,21)(19,22)(20,23)(41,77)(42,78)(43,79)(44,80)(45,71)(46,72)(47,73)(48,74)(49,75)(50,76)(51,70)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69), (1,29)(2,30)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,16,6,11),(2,15,7,20),(3,14,8,19),(4,13,9,18),(5,12,10,17),(21,34,26,39),(22,33,27,38),(23,32,28,37),(24,31,29,36),(25,40,30,35),(41,54,46,59),(42,53,47,58),(43,52,48,57),(44,51,49,56),(45,60,50,55),(61,74,66,79),(62,73,67,78),(63,72,68,77),(64,71,69,76),(65,80,70,75)], [(1,58,16,42,6,53,11,47),(2,55,15,45,7,60,20,50),(3,52,14,48,8,57,19,43),(4,59,13,41,9,54,18,46),(5,56,12,44,10,51,17,49),(21,72,34,68,26,77,39,63),(22,79,33,61,27,74,38,66),(23,76,32,64,28,71,37,69),(24,73,31,67,29,78,36,62),(25,80,40,70,30,75,35,65)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,24),(12,25),(13,26),(14,27),(15,28),(16,29),(17,30),(18,21),(19,22),(20,23),(41,77),(42,78),(43,79),(44,80),(45,71),(46,72),(47,73),(48,74),(49,75),(50,76),(51,70),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69)], [(1,29),(2,30),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80)]])

44 conjugacy classes

 class 1 2A 2B ··· 2F 2G 2H 4A 4B 4C 4D 4E ··· 4I 5 8A ··· 8P 10A 10B 10C 10D 10E 10F 10G 20A 20B order 1 2 2 ··· 2 2 2 4 4 4 4 4 ··· 4 5 8 ··· 8 10 10 10 10 10 10 10 20 20 size 1 1 2 ··· 2 10 10 2 2 5 5 10 ··· 10 4 10 ··· 10 4 4 4 8 8 8 8 8 8

44 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 4 4 4 4 4 8 type + + + + + + + + + - image C1 C2 C2 C2 C2 C4 C4 C4 C4 F5 C2×F5 C2×F5 C2×F5 Q8○M4(2) Dic5.C24 kernel Dic5.C24 D5⋊M4(2) D4.F5 C2×C22.F5 C2×D4⋊2D5 C2×Dic10 D4⋊2D5 C2×C5⋊D4 D4×C10 C2×D4 C2×C4 D4 C23 C5 C1 # reps 1 2 8 4 1 2 8 4 2 1 1 4 2 2 2

Matrix representation of Dic5.C24 in GL8(𝔽41)

 40 1 0 0 0 0 0 0 40 0 1 0 0 0 0 0 40 0 0 1 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40
,
 0 0 0 40 0 0 0 0 0 0 40 0 0 0 0 0 0 40 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 32
,
 14 27 4 0 0 0 0 0 18 27 0 14 0 0 0 0 14 0 27 18 0 0 0 0 0 4 27 14 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 32 0 0 0 0 0 0 0 0 32 0 0
,
 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 9 0
,
 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
,
 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40

G:=sub<GL(8,GF(41))| [40,40,40,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32],[14,18,14,0,0,0,0,0,27,27,0,4,0,0,0,0,4,0,27,27,0,0,0,0,0,14,18,14,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40] >;

Dic5.C24 in GAP, Magma, Sage, TeX

{\rm Dic}_5.C_2^4
% in TeX

G:=Group("Dic5.C2^4");
// GroupNames label

G:=SmallGroup(320,1594);
// by ID

G=gap.SmallGroup(320,1594);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,387,1123,102,6278,818]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^10=d^2=e^2=f^2=1,b^2=a^5,c^2=b,b*a*b^-1=a^-1,c*a*c^-1=a^3,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f=a^5*c,e*d*e=a^5*d,d*f=f*d,e*f=f*e>;
// generators/relations

׿
×
𝔽