Groups of normal p-rank one

A non-trivial p-group G always has a normal subgroup Cp◃G. One says that G has normal p-rank one if has no Cp2◃G. For odd p, only cyclic p-groups have this property. For p=2 dihedral (except D4), quaternion and semi​dihedral groups have normal p-rank one as well.

Groups of order 2

dρLabelID
C2Cyclic group21+C22,1

Groups of order 3

dρLabelID
C3Cyclic group; = A3 = triangle rotations31C33,1

Groups of order 4

dρLabelID
C4Cyclic group; = square rotations41C44,1

Groups of order 5

dρLabelID
C5Cyclic group; = pentagon rotations51C55,1

Groups of order 7

dρLabelID
C7Cyclic group71C77,1

Groups of order 8

dρLabelID
C8Cyclic group81C88,1
Q8Quaternion group; = C4.C2 = Dic2 = 2- 1+282-Q88,4

Groups of order 9

dρLabelID
C9Cyclic group91C99,1

Groups of order 11

dρLabelID
C11Cyclic group111C1111,1

Groups of order 13

dρLabelID
C13Cyclic group131C1313,1

Groups of order 16

dρLabelID
C16Cyclic group161C1616,1
D8Dihedral group82+D816,7
Q16Generalised quaternion group; = C8.C2 = Dic4162-Q1616,9
SD16Semidihedral group; = Q8C2 = QD1682SD1616,8

Groups of order 17

dρLabelID
C17Cyclic group171C1717,1

Groups of order 19

dρLabelID
C19Cyclic group191C1919,1

Groups of order 23

dρLabelID
C23Cyclic group231C2323,1

Groups of order 25

dρLabelID
C25Cyclic group251C2525,1

Groups of order 27

dρLabelID
C27Cyclic group271C2727,1

Groups of order 29

dρLabelID
C29Cyclic group291C2929,1

Groups of order 31

dρLabelID
C31Cyclic group311C3131,1

Groups of order 32

dρLabelID
C32Cyclic group321C3232,1
D16Dihedral group162+D1632,18
Q32Generalised quaternion group; = C16.C2 = Dic8322-Q3232,20
SD32Semidihedral group; = C162C2 = QD32162SD3232,19

Groups of order 37

dρLabelID
C37Cyclic group371C3737,1

Groups of order 41

dρLabelID
C41Cyclic group411C4141,1

Groups of order 43

dρLabelID
C43Cyclic group431C4343,1

Groups of order 47

dρLabelID
C47Cyclic group471C4747,1

Groups of order 49

dρLabelID
C49Cyclic group491C4949,1

Groups of order 53

dρLabelID
C53Cyclic group531C5353,1

Groups of order 59

dρLabelID
C59Cyclic group591C5959,1

Groups of order 61

dρLabelID
C61Cyclic group611C6161,1

Groups of order 64

dρLabelID
C64Cyclic group641C6464,1
D32Dihedral group322+D3264,52
Q64Generalised quaternion group; = C32.C2 = Dic16642-Q6464,54
SD64Semidihedral group; = C322C2 = QD64322SD6464,53

Groups of order 67

dρLabelID
C67Cyclic group671C6767,1

Groups of order 71

dρLabelID
C71Cyclic group711C7171,1

Groups of order 73

dρLabelID
C73Cyclic group731C7373,1

Groups of order 79

dρLabelID
C79Cyclic group791C7979,1

Groups of order 81

dρLabelID
C81Cyclic group811C8181,1

Groups of order 83

dρLabelID
C83Cyclic group831C8383,1

Groups of order 89

dρLabelID
C89Cyclic group891C8989,1

Groups of order 97

dρLabelID
C97Cyclic group971C9797,1

Groups of order 101

dρLabelID
C101Cyclic group1011C101101,1

Groups of order 103

dρLabelID
C103Cyclic group1031C103103,1

Groups of order 107

dρLabelID
C107Cyclic group1071C107107,1

Groups of order 109

dρLabelID
C109Cyclic group1091C109109,1

Groups of order 113

dρLabelID
C113Cyclic group1131C113113,1
׿
×
𝔽