Copied to
clipboard

G = C3⋊C8⋊D4order 192 = 26·3

2nd semidirect product of C3⋊C8 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3⋊C82D4, C31(C82D4), C4⋊C4.13D6, D63D42C2, C12⋊D44C2, (C2×D4).29D6, C4.161(S3×D4), (C2×C8).170D6, D4⋊C419S3, C12.111(C2×D4), C2.D2425C2, C12.Q86C2, C4.27(C4○D12), C12.10(C4○D4), C6.18(C4⋊D4), C2.18(D8⋊S3), C2.11(Q83D6), C6.36(C8⋊C22), (C2×Dic3).23D4, (C6×D4).43C22, (C22×S3).14D4, C22.180(S3×D4), C2.21(Dic3⋊D4), (C2×C12).222C23, (C2×C24).230C22, (C2×D12).52C22, C4⋊Dic3.75C22, (C2×D4⋊S3)⋊5C2, (C2×C8⋊S3)⋊18C2, (C2×C6).235(C2×D4), (C2×C3⋊C8).20C22, (S3×C2×C4).14C22, (C3×D4⋊C4)⋊30C2, (C3×C4⋊C4).23C22, (C2×C4).329(C22×S3), SmallGroup(192,341)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C3⋊C8⋊D4
C1C3C6C12C2×C12S3×C2×C4C12⋊D4 — C3⋊C8⋊D4
C3C6C2×C12 — C3⋊C8⋊D4
C1C22C2×C4D4⋊C4

Generators and relations for C3⋊C8⋊D4
 G = < a,b,c,d | a3=b8=c4=d2=1, bab-1=cac-1=dad=a-1, cbc-1=b3, dbd=b5, dcd=c-1 >

Subgroups: 472 in 130 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, C22×C4, C2×D4, C2×D4, C3⋊C8, C24, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, D4⋊C4, D4⋊C4, C4.Q8, C4⋊D4, C2×M4(2), C2×D8, C8⋊S3, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, D4⋊S3, C6.D4, C3×C4⋊C4, C2×C24, S3×C2×C4, C2×D12, C2×D12, C2×C3⋊D4, C6×D4, C82D4, C12.Q8, C2.D24, C3×D4⋊C4, C12⋊D4, C2×C8⋊S3, C2×D4⋊S3, D63D4, C3⋊C8⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4⋊D4, C8⋊C22, C4○D12, S3×D4, C82D4, Dic3⋊D4, D8⋊S3, Q83D6, C3⋊C8⋊D4

Character table of C3⋊C8⋊D4

 class 12A2B2C2D2E2F34A4B4C4D4E6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
 size 111181224222812242228844121244884444
ρ1111111111111111111111111111111    trivial
ρ2111111-1111-11111111-1-1-1-111-1-1-1-1-1-1    linear of order 2
ρ31111-1-11111-1-11111-1-111-1-111-1-11111    linear of order 2
ρ41111-1-1-11111-11111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ51111-11-1111-11-1111-1-1111111-1-11111    linear of order 2
ρ61111-11111111-1111-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ711111-1-11111-1-11111111-1-111111111    linear of order 2
ρ811111-11111-1-1-111111-1-11111-1-1-1-1-1-1    linear of order 2
ρ92-2-220002-22000-2-2200002-22-2000000    orthogonal lifted from D4
ρ1022220-202-2-2020222000000-2-2000000    orthogonal lifted from D4
ρ112222-200-122-200-1-1-1112200-1-111-1-1-1-1    orthogonal lifted from D6
ρ122-2-220002-22000-2-220000-222-2000000    orthogonal lifted from D4
ρ132222200-122-200-1-1-1-1-1-2-200-1-1111111    orthogonal lifted from D6
ρ142222200-122200-1-1-1-1-12200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1522220202-2-20-20222000000-2-2000000    orthogonal lifted from D4
ρ162222-200-122200-1-1-111-2-200-1-1-1-11111    orthogonal lifted from D6
ρ172-2-2200022-2000-2-22002i-2i00-22002i2i-2i-2i    complex lifted from C4○D4
ρ182-2-2200022-2000-2-2200-2i2i00-2200-2i-2i2i2i    complex lifted from C4○D4
ρ192-2-22000-12-200011-1-3--3-2i2i001-1-33ii-i-i    complex lifted from C4○D12
ρ202-2-22000-12-200011-1--3-32i-2i001-1-33-i-iii    complex lifted from C4○D12
ρ212-2-22000-12-200011-1-3--32i-2i001-13-3-i-iii    complex lifted from C4○D12
ρ222-2-22000-12-200011-1--3-3-2i2i001-13-3ii-i-i    complex lifted from C4○D12
ρ234-4-44000-2-4400022-2000000-22000000    orthogonal lifted from S3×D4
ρ244-44-40004000004-4-400000000000000    orthogonal lifted from C8⋊C22
ρ254444000-2-4-4000-2-2-200000022000000    orthogonal lifted from S3×D4
ρ2644-4-4000400000-44-400000000000000    orthogonal lifted from C8⋊C22
ρ2744-4-4000-2000002-2200000000006-66-6    orthogonal lifted from Q83D6
ρ2844-4-4000-2000002-220000000000-66-66    orthogonal lifted from Q83D6
ρ294-44-4000-200000-2220000000000--6-6-6--6    complex lifted from D8⋊S3
ρ304-44-4000-200000-2220000000000-6--6--6-6    complex lifted from D8⋊S3

Smallest permutation representation of C3⋊C8⋊D4
On 96 points
Generators in S96
(1 46 87)(2 88 47)(3 48 81)(4 82 41)(5 42 83)(6 84 43)(7 44 85)(8 86 45)(9 49 63)(10 64 50)(11 51 57)(12 58 52)(13 53 59)(14 60 54)(15 55 61)(16 62 56)(17 95 34)(18 35 96)(19 89 36)(20 37 90)(21 91 38)(22 39 92)(23 93 40)(24 33 94)(25 66 75)(26 76 67)(27 68 77)(28 78 69)(29 70 79)(30 80 71)(31 72 73)(32 74 65)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 68 13 22)(2 71 14 17)(3 66 15 20)(4 69 16 23)(5 72 9 18)(6 67 10 21)(7 70 11 24)(8 65 12 19)(25 55 90 48)(26 50 91 43)(27 53 92 46)(28 56 93 41)(29 51 94 44)(30 54 95 47)(31 49 96 42)(32 52 89 45)(33 85 79 57)(34 88 80 60)(35 83 73 63)(36 86 74 58)(37 81 75 61)(38 84 76 64)(39 87 77 59)(40 82 78 62)
(1 67)(2 72)(3 69)(4 66)(5 71)(6 68)(7 65)(8 70)(9 17)(10 22)(11 19)(12 24)(13 21)(14 18)(15 23)(16 20)(25 82)(26 87)(27 84)(28 81)(29 86)(30 83)(31 88)(32 85)(33 52)(34 49)(35 54)(36 51)(37 56)(38 53)(39 50)(40 55)(41 75)(42 80)(43 77)(44 74)(45 79)(46 76)(47 73)(48 78)(57 89)(58 94)(59 91)(60 96)(61 93)(62 90)(63 95)(64 92)

G:=sub<Sym(96)| (1,46,87)(2,88,47)(3,48,81)(4,82,41)(5,42,83)(6,84,43)(7,44,85)(8,86,45)(9,49,63)(10,64,50)(11,51,57)(12,58,52)(13,53,59)(14,60,54)(15,55,61)(16,62,56)(17,95,34)(18,35,96)(19,89,36)(20,37,90)(21,91,38)(22,39,92)(23,93,40)(24,33,94)(25,66,75)(26,76,67)(27,68,77)(28,78,69)(29,70,79)(30,80,71)(31,72,73)(32,74,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,68,13,22)(2,71,14,17)(3,66,15,20)(4,69,16,23)(5,72,9,18)(6,67,10,21)(7,70,11,24)(8,65,12,19)(25,55,90,48)(26,50,91,43)(27,53,92,46)(28,56,93,41)(29,51,94,44)(30,54,95,47)(31,49,96,42)(32,52,89,45)(33,85,79,57)(34,88,80,60)(35,83,73,63)(36,86,74,58)(37,81,75,61)(38,84,76,64)(39,87,77,59)(40,82,78,62), (1,67)(2,72)(3,69)(4,66)(5,71)(6,68)(7,65)(8,70)(9,17)(10,22)(11,19)(12,24)(13,21)(14,18)(15,23)(16,20)(25,82)(26,87)(27,84)(28,81)(29,86)(30,83)(31,88)(32,85)(33,52)(34,49)(35,54)(36,51)(37,56)(38,53)(39,50)(40,55)(41,75)(42,80)(43,77)(44,74)(45,79)(46,76)(47,73)(48,78)(57,89)(58,94)(59,91)(60,96)(61,93)(62,90)(63,95)(64,92)>;

G:=Group( (1,46,87)(2,88,47)(3,48,81)(4,82,41)(5,42,83)(6,84,43)(7,44,85)(8,86,45)(9,49,63)(10,64,50)(11,51,57)(12,58,52)(13,53,59)(14,60,54)(15,55,61)(16,62,56)(17,95,34)(18,35,96)(19,89,36)(20,37,90)(21,91,38)(22,39,92)(23,93,40)(24,33,94)(25,66,75)(26,76,67)(27,68,77)(28,78,69)(29,70,79)(30,80,71)(31,72,73)(32,74,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,68,13,22)(2,71,14,17)(3,66,15,20)(4,69,16,23)(5,72,9,18)(6,67,10,21)(7,70,11,24)(8,65,12,19)(25,55,90,48)(26,50,91,43)(27,53,92,46)(28,56,93,41)(29,51,94,44)(30,54,95,47)(31,49,96,42)(32,52,89,45)(33,85,79,57)(34,88,80,60)(35,83,73,63)(36,86,74,58)(37,81,75,61)(38,84,76,64)(39,87,77,59)(40,82,78,62), (1,67)(2,72)(3,69)(4,66)(5,71)(6,68)(7,65)(8,70)(9,17)(10,22)(11,19)(12,24)(13,21)(14,18)(15,23)(16,20)(25,82)(26,87)(27,84)(28,81)(29,86)(30,83)(31,88)(32,85)(33,52)(34,49)(35,54)(36,51)(37,56)(38,53)(39,50)(40,55)(41,75)(42,80)(43,77)(44,74)(45,79)(46,76)(47,73)(48,78)(57,89)(58,94)(59,91)(60,96)(61,93)(62,90)(63,95)(64,92) );

G=PermutationGroup([[(1,46,87),(2,88,47),(3,48,81),(4,82,41),(5,42,83),(6,84,43),(7,44,85),(8,86,45),(9,49,63),(10,64,50),(11,51,57),(12,58,52),(13,53,59),(14,60,54),(15,55,61),(16,62,56),(17,95,34),(18,35,96),(19,89,36),(20,37,90),(21,91,38),(22,39,92),(23,93,40),(24,33,94),(25,66,75),(26,76,67),(27,68,77),(28,78,69),(29,70,79),(30,80,71),(31,72,73),(32,74,65)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,68,13,22),(2,71,14,17),(3,66,15,20),(4,69,16,23),(5,72,9,18),(6,67,10,21),(7,70,11,24),(8,65,12,19),(25,55,90,48),(26,50,91,43),(27,53,92,46),(28,56,93,41),(29,51,94,44),(30,54,95,47),(31,49,96,42),(32,52,89,45),(33,85,79,57),(34,88,80,60),(35,83,73,63),(36,86,74,58),(37,81,75,61),(38,84,76,64),(39,87,77,59),(40,82,78,62)], [(1,67),(2,72),(3,69),(4,66),(5,71),(6,68),(7,65),(8,70),(9,17),(10,22),(11,19),(12,24),(13,21),(14,18),(15,23),(16,20),(25,82),(26,87),(27,84),(28,81),(29,86),(30,83),(31,88),(32,85),(33,52),(34,49),(35,54),(36,51),(37,56),(38,53),(39,50),(40,55),(41,75),(42,80),(43,77),(44,74),(45,79),(46,76),(47,73),(48,78),(57,89),(58,94),(59,91),(60,96),(61,93),(62,90),(63,95),(64,92)]])

Matrix representation of C3⋊C8⋊D4 in GL8(𝔽73)

10000000
01000000
000720000
001720000
00001000
00000100
00000010
00000001
,
10000000
01000000
000720000
007200000
0000172722
000000720
00001000
000001072
,
23000000
4771000000
000720000
007200000
00006112560
000029685634
00002961024
000029561217
,
7170000000
12000000
00010000
00100000
00002961024
00001254924
00006112560
000044176156

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,72,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,2,0,0,72],[2,47,0,0,0,0,0,0,3,71,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,61,29,29,29,0,0,0,0,12,68,61,56,0,0,0,0,56,56,0,12,0,0,0,0,0,34,24,17],[71,1,0,0,0,0,0,0,70,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,29,12,61,44,0,0,0,0,61,5,12,17,0,0,0,0,0,49,56,61,0,0,0,0,24,24,0,56] >;

C3⋊C8⋊D4 in GAP, Magma, Sage, TeX

C_3\rtimes C_8\rtimes D_4
% in TeX

G:=Group("C3:C8:D4");
// GroupNames label

G:=SmallGroup(192,341);
// by ID

G=gap.SmallGroup(192,341);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,1094,135,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^4=d^2=1,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=b^3,d*b*d=b^5,d*c*d=c^-1>;
// generators/relations

Export

Character table of C3⋊C8⋊D4 in TeX

׿
×
𝔽