Copied to
clipboard

?

G = Dic610D4order 192 = 26·3

3rd semidirect product of Dic6 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic610D4, C42.142D6, C6.912- (1+4), C4.71(S3×D4), (C4×D12)⋊44C2, C35(Q85D4), C12.64(C2×D4), D615(C4○D4), D63D434C2, Dic3⋊D441C2, D63Q829C2, (C4×Dic6)⋊45C2, (C2×D4).174D6, C4.4D411S3, (C2×Q8).161D6, C22⋊C4.73D6, C6.91(C22×D4), (C2×C6).221C24, (C2×C12).81C23, C2.52(Q8○D12), Dic3.28(C2×D4), Dic34D430C2, (C4×C12).186C22, D6⋊C4.135C22, (C6×D4).156C22, C23.53(C22×S3), (C22×C6).51C23, (C6×Q8).127C22, C23.11D640C2, Dic3.D441C2, (C2×D12).223C22, C4⋊Dic3.377C22, C22.242(S3×C23), Dic3⋊C4.121C22, (C22×S3).216C23, (C2×Dic6).297C22, (C4×Dic3).214C22, (C2×Dic3).253C23, C6.D4.55C22, (C22×Dic3).143C22, (C2×S3×Q8)⋊11C2, C2.64(C2×S3×D4), C2.77(S3×C4○D4), C6.188(C2×C4○D4), (C2×D42S3)⋊19C2, (C3×C4.4D4)⋊13C2, (S3×C2×C4).121C22, (C2×C4).196(C22×S3), (C2×C3⋊D4).60C22, (C3×C22⋊C4).65C22, SmallGroup(192,1236)

Series: Derived Chief Lower central Upper central

C1C2×C6 — Dic610D4
C1C3C6C2×C6C22×S3S3×C2×C4C2×S3×Q8 — Dic610D4
C3C2×C6 — Dic610D4

Subgroups: 736 in 290 conjugacy classes, 105 normal (43 characteristic)
C1, C2 [×3], C2 [×5], C3, C4 [×2], C4 [×12], C22, C22 [×13], S3 [×3], C6 [×3], C6 [×2], C2×C4 [×3], C2×C4 [×2], C2×C4 [×18], D4 [×12], Q8 [×10], C23 [×2], C23 [×2], Dic3 [×4], Dic3 [×4], C12 [×2], C12 [×4], D6 [×2], D6 [×5], C2×C6, C2×C6 [×6], C42, C42 [×2], C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×6], C22×C4 [×6], C2×D4, C2×D4 [×5], C2×Q8, C2×Q8 [×7], C4○D4 [×4], Dic6 [×4], Dic6 [×4], C4×S3 [×8], D12 [×2], C2×Dic3 [×2], C2×Dic3 [×4], C2×Dic3 [×4], C3⋊D4 [×8], C2×C12 [×3], C2×C12 [×2], C3×D4 [×2], C3×Q8 [×2], C22×S3 [×2], C22×C6 [×2], C4×D4 [×3], C4×Q8, C4⋊D4 [×3], C22⋊Q8 [×3], C4.4D4, C4.4D4 [×2], C22×Q8, C2×C4○D4, C4×Dic3 [×2], Dic3⋊C4 [×4], C4⋊Dic3 [×2], D6⋊C4 [×2], D6⋊C4 [×2], C6.D4 [×2], C4×C12, C3×C22⋊C4 [×4], C2×Dic6, C2×Dic6 [×2], S3×C2×C4 [×2], S3×C2×C4 [×2], C2×D12, D42S3 [×4], S3×Q8 [×4], C22×Dic3 [×2], C2×C3⋊D4 [×4], C6×D4, C6×Q8, Q85D4, C4×Dic6, C4×D12, Dic3.D4 [×2], Dic34D4 [×2], Dic3⋊D4 [×2], C23.11D6 [×2], D63D4, D63Q8, C3×C4.4D4, C2×D42S3, C2×S3×Q8, Dic610D4

Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C4○D4 [×2], C24, C22×S3 [×7], C22×D4, C2×C4○D4, 2- (1+4), S3×D4 [×2], S3×C23, Q85D4, C2×S3×D4, S3×C4○D4, Q8○D12, Dic610D4

Generators and relations
 G = < a,b,c,d | a12=c4=d2=1, b2=a6, bab-1=a-1, ac=ca, dad=a5, cbc-1=dbd=a6b, dcd=c-1 >

Smallest permutation representation
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 36 7 30)(2 35 8 29)(3 34 9 28)(4 33 10 27)(5 32 11 26)(6 31 12 25)(13 65 19 71)(14 64 20 70)(15 63 21 69)(16 62 22 68)(17 61 23 67)(18 72 24 66)(37 94 43 88)(38 93 44 87)(39 92 45 86)(40 91 46 85)(41 90 47 96)(42 89 48 95)(49 81 55 75)(50 80 56 74)(51 79 57 73)(52 78 58 84)(53 77 59 83)(54 76 60 82)
(1 92 63 49)(2 93 64 50)(3 94 65 51)(4 95 66 52)(5 96 67 53)(6 85 68 54)(7 86 69 55)(8 87 70 56)(9 88 71 57)(10 89 72 58)(11 90 61 59)(12 91 62 60)(13 79 28 43)(14 80 29 44)(15 81 30 45)(16 82 31 46)(17 83 32 47)(18 84 33 48)(19 73 34 37)(20 74 35 38)(21 75 36 39)(22 76 25 40)(23 77 26 41)(24 78 27 42)
(1 63)(2 68)(3 61)(4 66)(5 71)(6 64)(7 69)(8 62)(9 67)(10 72)(11 65)(12 70)(13 26)(14 31)(15 36)(16 29)(17 34)(18 27)(19 32)(20 25)(21 30)(22 35)(23 28)(24 33)(37 47)(38 40)(39 45)(41 43)(42 48)(44 46)(50 54)(51 59)(53 57)(56 60)(73 83)(74 76)(75 81)(77 79)(78 84)(80 82)(85 93)(87 91)(88 96)(90 94)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,36,7,30)(2,35,8,29)(3,34,9,28)(4,33,10,27)(5,32,11,26)(6,31,12,25)(13,65,19,71)(14,64,20,70)(15,63,21,69)(16,62,22,68)(17,61,23,67)(18,72,24,66)(37,94,43,88)(38,93,44,87)(39,92,45,86)(40,91,46,85)(41,90,47,96)(42,89,48,95)(49,81,55,75)(50,80,56,74)(51,79,57,73)(52,78,58,84)(53,77,59,83)(54,76,60,82), (1,92,63,49)(2,93,64,50)(3,94,65,51)(4,95,66,52)(5,96,67,53)(6,85,68,54)(7,86,69,55)(8,87,70,56)(9,88,71,57)(10,89,72,58)(11,90,61,59)(12,91,62,60)(13,79,28,43)(14,80,29,44)(15,81,30,45)(16,82,31,46)(17,83,32,47)(18,84,33,48)(19,73,34,37)(20,74,35,38)(21,75,36,39)(22,76,25,40)(23,77,26,41)(24,78,27,42), (1,63)(2,68)(3,61)(4,66)(5,71)(6,64)(7,69)(8,62)(9,67)(10,72)(11,65)(12,70)(13,26)(14,31)(15,36)(16,29)(17,34)(18,27)(19,32)(20,25)(21,30)(22,35)(23,28)(24,33)(37,47)(38,40)(39,45)(41,43)(42,48)(44,46)(50,54)(51,59)(53,57)(56,60)(73,83)(74,76)(75,81)(77,79)(78,84)(80,82)(85,93)(87,91)(88,96)(90,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,36,7,30)(2,35,8,29)(3,34,9,28)(4,33,10,27)(5,32,11,26)(6,31,12,25)(13,65,19,71)(14,64,20,70)(15,63,21,69)(16,62,22,68)(17,61,23,67)(18,72,24,66)(37,94,43,88)(38,93,44,87)(39,92,45,86)(40,91,46,85)(41,90,47,96)(42,89,48,95)(49,81,55,75)(50,80,56,74)(51,79,57,73)(52,78,58,84)(53,77,59,83)(54,76,60,82), (1,92,63,49)(2,93,64,50)(3,94,65,51)(4,95,66,52)(5,96,67,53)(6,85,68,54)(7,86,69,55)(8,87,70,56)(9,88,71,57)(10,89,72,58)(11,90,61,59)(12,91,62,60)(13,79,28,43)(14,80,29,44)(15,81,30,45)(16,82,31,46)(17,83,32,47)(18,84,33,48)(19,73,34,37)(20,74,35,38)(21,75,36,39)(22,76,25,40)(23,77,26,41)(24,78,27,42), (1,63)(2,68)(3,61)(4,66)(5,71)(6,64)(7,69)(8,62)(9,67)(10,72)(11,65)(12,70)(13,26)(14,31)(15,36)(16,29)(17,34)(18,27)(19,32)(20,25)(21,30)(22,35)(23,28)(24,33)(37,47)(38,40)(39,45)(41,43)(42,48)(44,46)(50,54)(51,59)(53,57)(56,60)(73,83)(74,76)(75,81)(77,79)(78,84)(80,82)(85,93)(87,91)(88,96)(90,94) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,36,7,30),(2,35,8,29),(3,34,9,28),(4,33,10,27),(5,32,11,26),(6,31,12,25),(13,65,19,71),(14,64,20,70),(15,63,21,69),(16,62,22,68),(17,61,23,67),(18,72,24,66),(37,94,43,88),(38,93,44,87),(39,92,45,86),(40,91,46,85),(41,90,47,96),(42,89,48,95),(49,81,55,75),(50,80,56,74),(51,79,57,73),(52,78,58,84),(53,77,59,83),(54,76,60,82)], [(1,92,63,49),(2,93,64,50),(3,94,65,51),(4,95,66,52),(5,96,67,53),(6,85,68,54),(7,86,69,55),(8,87,70,56),(9,88,71,57),(10,89,72,58),(11,90,61,59),(12,91,62,60),(13,79,28,43),(14,80,29,44),(15,81,30,45),(16,82,31,46),(17,83,32,47),(18,84,33,48),(19,73,34,37),(20,74,35,38),(21,75,36,39),(22,76,25,40),(23,77,26,41),(24,78,27,42)], [(1,63),(2,68),(3,61),(4,66),(5,71),(6,64),(7,69),(8,62),(9,67),(10,72),(11,65),(12,70),(13,26),(14,31),(15,36),(16,29),(17,34),(18,27),(19,32),(20,25),(21,30),(22,35),(23,28),(24,33),(37,47),(38,40),(39,45),(41,43),(42,48),(44,46),(50,54),(51,59),(53,57),(56,60),(73,83),(74,76),(75,81),(77,79),(78,84),(80,82),(85,93),(87,91),(88,96),(90,94)])

Matrix representation G ⊆ GL6(𝔽13)

800000
050000
000100
00121200
000010
000001
,
010000
1200000
0012000
001100
000010
000001
,
100000
0120000
0012000
0001200
000012
00001212
,
100000
0120000
001000
00121200
0000120
000011

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,2,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,0,1] >;

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F4G4H···4M4N4O4P6A6B6C6D6E12A···12F12G12H
order122222222344444444···44446666612···121212
size1111446612222224446···6121212222884···488

39 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4○D42- (1+4)S3×D4S3×C4○D4Q8○D12
kernelDic610D4C4×Dic6C4×D12Dic3.D4Dic34D4Dic3⋊D4C23.11D6D63D4D63Q8C3×C4.4D4C2×D42S3C2×S3×Q8C4.4D4Dic6C42C22⋊C4C2×D4C2×Q8D6C6C4C2C2
# reps11122221111114141141222

In GAP, Magma, Sage, TeX

Dic_6\rtimes_{10}D_4
% in TeX

G:=Group("Dic6:10D4");
// GroupNames label

G:=SmallGroup(192,1236);
// by ID

G=gap.SmallGroup(192,1236);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,100,1571,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^4=d^2=1,b^2=a^6,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^5,c*b*c^-1=d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽