Copied to
clipboard

?

G = D85D14order 448 = 26·7

5th semidirect product of D8 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D85D14, SD163D14, D28.41D4, D562C22, C56.2C23, M4(2)⋊9D14, C28.21C24, Dic14.41D4, D28.14C23, Dic14.14C23, (D7×D8)⋊2C2, C74(D4○D8), C4○D43D14, C8⋊C224D7, C7⋊D4.4D4, D8⋊D73C2, (C2×D4)⋊15D14, C8⋊D142C2, D56⋊C22C2, D28.C41C2, C4.115(D4×D7), (C8×D7)⋊3C22, (C7×D8)⋊3C22, (D4×D7)⋊3C22, C7⋊C8.25C23, D48D147C2, D46D147C2, C8.2(C22×D7), D4⋊D714C22, D14.32(C2×D4), C28.242(C2×D4), C4○D288C22, C56⋊C23C22, C8⋊D73C22, Q8⋊D713C22, C4.21(C23×D7), C22.14(D4×D7), SD163D72C2, D4.8D143C2, (D4×C14)⋊23C22, D42D73C22, (C2×D28)⋊36C22, D4.D713C22, Dic7.37(C2×D4), Q82D73C22, (C7×SD16)⋊3C22, (C4×D7).13C23, D4.14(C22×D7), C7⋊Q1612C22, (C7×D4).14C23, Q8.14(C22×D7), (C7×Q8).14C23, (C2×C28).112C23, C14.122(C22×D4), (C7×M4(2))⋊3C22, C2.95(C2×D4×D7), (C2×D4⋊D7)⋊29C2, (C7×C8⋊C22)⋊3C2, (C2×C7⋊C8)⋊17C22, (C2×C14).67(C2×D4), (C7×C4○D4)⋊6C22, (C2×C4).96(C22×D7), SmallGroup(448,1227)

Series: Derived Chief Lower central Upper central

C1C28 — D85D14
C1C7C14C28C4×D7C4○D28D46D14 — D85D14
C7C14C28 — D85D14

Subgroups: 1548 in 268 conjugacy classes, 99 normal (45 characteristic)
C1, C2, C2 [×9], C4 [×2], C4 [×4], C22, C22 [×14], C7, C8 [×2], C8 [×2], C2×C4, C2×C4 [×8], D4, D4 [×2], D4 [×18], Q8, Q8 [×2], C23 [×6], D7 [×5], C14, C14 [×4], C2×C8 [×3], M4(2), M4(2) [×2], D8 [×2], D8 [×7], SD16 [×2], SD16 [×4], Q16, C2×D4, C2×D4 [×11], C4○D4, C4○D4 [×8], Dic7 [×2], Dic7, C28 [×2], C28, D14 [×2], D14 [×8], C2×C14, C2×C14 [×4], C8○D4, C2×D8 [×3], C4○D8 [×3], C8⋊C22, C8⋊C22 [×5], 2+ (1+4) [×2], C7⋊C8 [×2], C56 [×2], Dic14 [×2], C4×D7 [×2], C4×D7 [×3], D28 [×2], D28 [×2], D28 [×3], C2×Dic7 [×2], C7⋊D4 [×2], C7⋊D4 [×7], C2×C28, C2×C28, C7×D4, C7×D4 [×2], C7×D4 [×2], C7×Q8, C22×D7 [×5], C22×C14, D4○D8, C8×D7 [×2], C8⋊D7 [×2], C56⋊C2 [×2], D56 [×2], C2×C7⋊C8, D4⋊D7, D4⋊D7 [×4], D4.D7, Q8⋊D7, C7⋊Q16, C7×M4(2), C7×D8 [×2], C7×SD16 [×2], C2×D28, C2×D28, C4○D28 [×2], C4○D28, D4×D7 [×4], D4×D7 [×3], D42D7 [×2], D42D7, Q82D7 [×2], C2×C7⋊D4 [×2], D4×C14, C7×C4○D4, D28.C4, C8⋊D14, D7×D8 [×2], D8⋊D7 [×2], D56⋊C2 [×2], SD163D7 [×2], C2×D4⋊D7, D4.8D14, C7×C8⋊C22, D46D14, D48D14, D85D14

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C22×D4, C22×D7 [×7], D4○D8, D4×D7 [×2], C23×D7, C2×D4×D7, D85D14

Generators and relations
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=a-1, cac-1=a5, dad=a3, bc=cb, dbd=a6b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 25 84 110 62 43 30 90)(2 44 71 91 63 26 31 111)(3 27 72 112 64 45 32 92)(4 46 73 93 65 28 33 99)(5 15 74 100 66 47 34 94)(6 48 75 95 67 16 35 101)(7 17 76 102 68 49 36 96)(8 50 77 97 69 18 37 103)(9 19 78 104 70 51 38 98)(10 52 79 85 57 20 39 105)(11 21 80 106 58 53 40 86)(12 54 81 87 59 22 41 107)(13 23 82 108 60 55 42 88)(14 56 83 89 61 24 29 109)
(1 77)(2 78)(3 79)(4 80)(5 81)(6 82)(7 83)(8 84)(9 71)(10 72)(11 73)(12 74)(13 75)(14 76)(15 54)(16 55)(17 56)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)(26 51)(27 52)(28 53)(29 68)(30 69)(31 70)(32 57)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 65)(41 66)(42 67)(85 92)(86 93)(87 94)(88 95)(89 96)(90 97)(91 98)(99 106)(100 107)(101 108)(102 109)(103 110)(104 111)(105 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 28)(12 27)(13 26)(14 25)(29 110)(30 109)(31 108)(32 107)(33 106)(34 105)(35 104)(36 103)(37 102)(38 101)(39 100)(40 99)(41 112)(42 111)(43 61)(44 60)(45 59)(46 58)(47 57)(48 70)(49 69)(50 68)(51 67)(52 66)(53 65)(54 64)(55 63)(56 62)(71 88)(72 87)(73 86)(74 85)(75 98)(76 97)(77 96)(78 95)(79 94)(80 93)(81 92)(82 91)(83 90)(84 89)

G:=sub<Sym(112)| (1,25,84,110,62,43,30,90)(2,44,71,91,63,26,31,111)(3,27,72,112,64,45,32,92)(4,46,73,93,65,28,33,99)(5,15,74,100,66,47,34,94)(6,48,75,95,67,16,35,101)(7,17,76,102,68,49,36,96)(8,50,77,97,69,18,37,103)(9,19,78,104,70,51,38,98)(10,52,79,85,57,20,39,105)(11,21,80,106,58,53,40,86)(12,54,81,87,59,22,41,107)(13,23,82,108,60,55,42,88)(14,56,83,89,61,24,29,109), (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,54)(16,55)(17,56)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,68)(30,69)(31,70)(32,57)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,65)(41,66)(42,67)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,28)(12,27)(13,26)(14,25)(29,110)(30,109)(31,108)(32,107)(33,106)(34,105)(35,104)(36,103)(37,102)(38,101)(39,100)(40,99)(41,112)(42,111)(43,61)(44,60)(45,59)(46,58)(47,57)(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64)(55,63)(56,62)(71,88)(72,87)(73,86)(74,85)(75,98)(76,97)(77,96)(78,95)(79,94)(80,93)(81,92)(82,91)(83,90)(84,89)>;

G:=Group( (1,25,84,110,62,43,30,90)(2,44,71,91,63,26,31,111)(3,27,72,112,64,45,32,92)(4,46,73,93,65,28,33,99)(5,15,74,100,66,47,34,94)(6,48,75,95,67,16,35,101)(7,17,76,102,68,49,36,96)(8,50,77,97,69,18,37,103)(9,19,78,104,70,51,38,98)(10,52,79,85,57,20,39,105)(11,21,80,106,58,53,40,86)(12,54,81,87,59,22,41,107)(13,23,82,108,60,55,42,88)(14,56,83,89,61,24,29,109), (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,54)(16,55)(17,56)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,68)(30,69)(31,70)(32,57)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,65)(41,66)(42,67)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,28)(12,27)(13,26)(14,25)(29,110)(30,109)(31,108)(32,107)(33,106)(34,105)(35,104)(36,103)(37,102)(38,101)(39,100)(40,99)(41,112)(42,111)(43,61)(44,60)(45,59)(46,58)(47,57)(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64)(55,63)(56,62)(71,88)(72,87)(73,86)(74,85)(75,98)(76,97)(77,96)(78,95)(79,94)(80,93)(81,92)(82,91)(83,90)(84,89) );

G=PermutationGroup([(1,25,84,110,62,43,30,90),(2,44,71,91,63,26,31,111),(3,27,72,112,64,45,32,92),(4,46,73,93,65,28,33,99),(5,15,74,100,66,47,34,94),(6,48,75,95,67,16,35,101),(7,17,76,102,68,49,36,96),(8,50,77,97,69,18,37,103),(9,19,78,104,70,51,38,98),(10,52,79,85,57,20,39,105),(11,21,80,106,58,53,40,86),(12,54,81,87,59,22,41,107),(13,23,82,108,60,55,42,88),(14,56,83,89,61,24,29,109)], [(1,77),(2,78),(3,79),(4,80),(5,81),(6,82),(7,83),(8,84),(9,71),(10,72),(11,73),(12,74),(13,75),(14,76),(15,54),(16,55),(17,56),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50),(26,51),(27,52),(28,53),(29,68),(30,69),(31,70),(32,57),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,65),(41,66),(42,67),(85,92),(86,93),(87,94),(88,95),(89,96),(90,97),(91,98),(99,106),(100,107),(101,108),(102,109),(103,110),(104,111),(105,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,28),(12,27),(13,26),(14,25),(29,110),(30,109),(31,108),(32,107),(33,106),(34,105),(35,104),(36,103),(37,102),(38,101),(39,100),(40,99),(41,112),(42,111),(43,61),(44,60),(45,59),(46,58),(47,57),(48,70),(49,69),(50,68),(51,67),(52,66),(53,65),(54,64),(55,63),(56,62),(71,88),(72,87),(73,86),(74,85),(75,98),(76,97),(77,96),(78,95),(79,94),(80,93),(81,92),(82,91),(83,90),(84,89)])

Matrix representation G ⊆ GL8(𝔽113)

00100000
00010000
1120000000
0112000000
00006899138
00008381611
000089596969
0000545010251
,
1120000000
0112000000
00100000
00010000
00003110640
000086700111
0000719711067
00008844043
,
10433000000
8033000000
00104330000
0080330000
000032396444
0000274302
0000817411051
000061754041
,
0001120000
0011200000
0112000000
1120000000
0000010900
000028000
000073606299
0000723510551

G:=sub<GL(8,GF(113))| [0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,68,8,89,54,0,0,0,0,99,38,59,50,0,0,0,0,13,16,69,102,0,0,0,0,8,11,69,51],[112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,86,71,88,0,0,0,0,110,70,97,4,0,0,0,0,64,0,110,40,0,0,0,0,0,111,67,43],[104,80,0,0,0,0,0,0,33,33,0,0,0,0,0,0,0,0,104,80,0,0,0,0,0,0,33,33,0,0,0,0,0,0,0,0,32,27,81,61,0,0,0,0,39,43,74,75,0,0,0,0,64,0,110,40,0,0,0,0,44,2,51,41],[0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,0,0,0,28,73,72,0,0,0,0,109,0,60,35,0,0,0,0,0,0,62,105,0,0,0,0,0,0,99,51] >;

55 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F7A7B7C8A8B8C8D8E14A14B14C14D14E14F14G···14O28A···28F28G28H28I56A···56F
order122222222224444447778888814141414141414···1428···2828282856···56
size1124441414282828224141428222441414282224448···84···48888···8

55 irreducible representations

dim1111111111112222222224448
type+++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14D4○D8D4×D7D4×D7D85D14
kernelD85D14D28.C4C8⋊D14D7×D8D8⋊D7D56⋊C2SD163D7C2×D4⋊D7D4.8D14C7×C8⋊C22D46D14D48D14Dic14D28C7⋊D4C8⋊C22M4(2)D8SD16C2×D4C4○D4C7C4C22C1
# reps1112222111111123366332333

In GAP, Magma, Sage, TeX

D_8\rtimes_5D_{14}
% in TeX

G:=Group("D8:5D14");
// GroupNames label

G:=SmallGroup(448,1227);
// by ID

G=gap.SmallGroup(448,1227);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,570,185,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=a^-1,c*a*c^-1=a^5,d*a*d=a^3,b*c=c*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽