Copied to
clipboard

?

G = D86D14order 448 = 26·7

6th semidirect product of D8 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D86D14, SD164D14, D28.42D4, C56.3C23, C28.22C24, M4(2)⋊10D14, Dic14.42D4, Dic282C22, D28.15C23, Dic14.15C23, C4○D44D14, C8⋊C225D7, C7⋊D4.5D4, D8⋊D74C2, D83D72C2, D28.C42C2, (D7×SD16)⋊2C2, C4.116(D4×D7), C74(D4○SD16), (C7×D8)⋊4C22, (C8×D7)⋊4C22, C7⋊C8.26C23, D46D148C2, (Q8×D7)⋊3C22, C8.3(C22×D7), D4⋊D715C22, D14.33(C2×D4), C28.243(C2×D4), C8.D142C2, SD16⋊D72C2, C8⋊D74C22, C56⋊C24C22, Q8⋊D714C22, (D4×D7).3C22, C4.22(C23×D7), C22.15(D4×D7), (C2×D4).117D14, D4.8D144C2, D42D74C22, D4.D714C22, Dic7.38(C2×D4), (C7×SD16)⋊4C22, C7⋊Q1613C22, (C7×D4).15C23, (C4×D7).14C23, D4.15(C22×D7), D4.10D147C2, (C7×Q8).15C23, Q8.15(C22×D7), (C2×C28).113C23, C4○D28.29C22, C14.123(C22×D4), (C7×M4(2))⋊4C22, (C2×Dic14)⋊40C22, (D4×C14).168C22, C2.96(C2×D4×D7), (C7×C8⋊C22)⋊4C2, (C2×C7⋊C8)⋊18C22, (C2×D4.D7)⋊29C2, (C2×C14).68(C2×D4), (C7×C4○D4)⋊7C22, (C2×C4).97(C22×D7), SmallGroup(448,1228)

Series: Derived Chief Lower central Upper central

C1C28 — D86D14
C1C7C14C28C4×D7C4○D28D46D14 — D86D14
C7C14C28 — D86D14

Subgroups: 1292 in 258 conjugacy classes, 99 normal (45 characteristic)
C1, C2, C2 [×7], C4 [×2], C4 [×6], C22, C22 [×9], C7, C8 [×2], C8 [×2], C2×C4, C2×C4 [×11], D4, D4 [×2], D4 [×13], Q8, Q8 [×7], C23 [×3], D7 [×3], C14, C14 [×4], C2×C8 [×3], M4(2), M4(2) [×2], D8 [×2], D8, SD16 [×2], SD16 [×8], Q16 [×3], C2×D4, C2×D4 [×5], C2×Q8 [×4], C4○D4, C4○D4 [×10], Dic7 [×2], Dic7 [×3], C28 [×2], C28, D14 [×2], D14 [×3], C2×C14, C2×C14 [×4], C8○D4, C2×SD16 [×3], C4○D8 [×3], C8⋊C22, C8⋊C22 [×2], C8.C22 [×3], 2+ (1+4), 2- (1+4), C7⋊C8 [×2], C56 [×2], Dic14 [×2], Dic14 [×2], Dic14 [×3], C4×D7 [×2], C4×D7 [×3], D28 [×2], C2×Dic7 [×5], C7⋊D4 [×2], C7⋊D4 [×7], C2×C28, C2×C28, C7×D4, C7×D4 [×2], C7×D4 [×2], C7×Q8, C22×D7 [×2], C22×C14, D4○SD16, C8×D7 [×2], C8⋊D7 [×2], C56⋊C2 [×2], Dic28 [×2], C2×C7⋊C8, D4⋊D7, D4.D7, D4.D7 [×4], Q8⋊D7, C7⋊Q16, C7×M4(2), C7×D8 [×2], C7×SD16 [×2], C2×Dic14, C2×Dic14, C4○D28 [×2], C4○D28, D4×D7 [×2], D4×D7, D42D7 [×4], D42D7 [×3], Q8×D7 [×2], C2×C7⋊D4 [×2], D4×C14, C7×C4○D4, D28.C4, C8.D14, D8⋊D7 [×2], D83D7 [×2], D7×SD16 [×2], SD16⋊D7 [×2], C2×D4.D7, D4.8D14, C7×C8⋊C22, D46D14, D4.10D14, D86D14

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C22×D4, C22×D7 [×7], D4○SD16, D4×D7 [×2], C23×D7, C2×D4×D7, D86D14

Generators and relations
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=a-1, cac-1=dad=a3, bc=cb, dbd=a4b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 46 104 30 94 67 21 80)(2 31 22 47 95 81 105 68)(3 48 106 32 96 69 23 82)(4 33 24 49 97 83 107 70)(5 50 108 34 98 57 25 84)(6 35 26 51 85 71 109 58)(7 52 110 36 86 59 27 72)(8 37 28 53 87 73 111 60)(9 54 112 38 88 61 15 74)(10 39 16 55 89 75 99 62)(11 56 100 40 90 63 17 76)(12 41 18 43 91 77 101 64)(13 44 102 42 92 65 19 78)(14 29 20 45 93 79 103 66)
(15 112)(16 99)(17 100)(18 101)(19 102)(20 103)(21 104)(22 105)(23 106)(24 107)(25 108)(26 109)(27 110)(28 111)(29 66)(30 67)(31 68)(32 69)(33 70)(34 57)(35 58)(36 59)(37 60)(38 61)(39 62)(40 63)(41 64)(42 65)(43 77)(44 78)(45 79)(46 80)(47 81)(48 82)(49 83)(50 84)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 110)(2 109)(3 108)(4 107)(5 106)(6 105)(7 104)(8 103)(9 102)(10 101)(11 100)(12 99)(13 112)(14 111)(15 92)(16 91)(17 90)(18 89)(19 88)(20 87)(21 86)(22 85)(23 98)(24 97)(25 96)(26 95)(27 94)(28 93)(29 37)(30 36)(31 35)(32 34)(38 42)(39 41)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)(49 70)(50 69)(51 68)(52 67)(53 66)(54 65)(55 64)(56 63)(71 81)(72 80)(73 79)(74 78)(75 77)(82 84)

G:=sub<Sym(112)| (1,46,104,30,94,67,21,80)(2,31,22,47,95,81,105,68)(3,48,106,32,96,69,23,82)(4,33,24,49,97,83,107,70)(5,50,108,34,98,57,25,84)(6,35,26,51,85,71,109,58)(7,52,110,36,86,59,27,72)(8,37,28,53,87,73,111,60)(9,54,112,38,88,61,15,74)(10,39,16,55,89,75,99,62)(11,56,100,40,90,63,17,76)(12,41,18,43,91,77,101,64)(13,44,102,42,92,65,19,78)(14,29,20,45,93,79,103,66), (15,112)(16,99)(17,100)(18,101)(19,102)(20,103)(21,104)(22,105)(23,106)(24,107)(25,108)(26,109)(27,110)(28,111)(29,66)(30,67)(31,68)(32,69)(33,70)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(49,83)(50,84)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,110)(2,109)(3,108)(4,107)(5,106)(6,105)(7,104)(8,103)(9,102)(10,101)(11,100)(12,99)(13,112)(14,111)(15,92)(16,91)(17,90)(18,89)(19,88)(20,87)(21,86)(22,85)(23,98)(24,97)(25,96)(26,95)(27,94)(28,93)(29,37)(30,36)(31,35)(32,34)(38,42)(39,41)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,64)(56,63)(71,81)(72,80)(73,79)(74,78)(75,77)(82,84)>;

G:=Group( (1,46,104,30,94,67,21,80)(2,31,22,47,95,81,105,68)(3,48,106,32,96,69,23,82)(4,33,24,49,97,83,107,70)(5,50,108,34,98,57,25,84)(6,35,26,51,85,71,109,58)(7,52,110,36,86,59,27,72)(8,37,28,53,87,73,111,60)(9,54,112,38,88,61,15,74)(10,39,16,55,89,75,99,62)(11,56,100,40,90,63,17,76)(12,41,18,43,91,77,101,64)(13,44,102,42,92,65,19,78)(14,29,20,45,93,79,103,66), (15,112)(16,99)(17,100)(18,101)(19,102)(20,103)(21,104)(22,105)(23,106)(24,107)(25,108)(26,109)(27,110)(28,111)(29,66)(30,67)(31,68)(32,69)(33,70)(34,57)(35,58)(36,59)(37,60)(38,61)(39,62)(40,63)(41,64)(42,65)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(49,83)(50,84)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,110)(2,109)(3,108)(4,107)(5,106)(6,105)(7,104)(8,103)(9,102)(10,101)(11,100)(12,99)(13,112)(14,111)(15,92)(16,91)(17,90)(18,89)(19,88)(20,87)(21,86)(22,85)(23,98)(24,97)(25,96)(26,95)(27,94)(28,93)(29,37)(30,36)(31,35)(32,34)(38,42)(39,41)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,64)(56,63)(71,81)(72,80)(73,79)(74,78)(75,77)(82,84) );

G=PermutationGroup([(1,46,104,30,94,67,21,80),(2,31,22,47,95,81,105,68),(3,48,106,32,96,69,23,82),(4,33,24,49,97,83,107,70),(5,50,108,34,98,57,25,84),(6,35,26,51,85,71,109,58),(7,52,110,36,86,59,27,72),(8,37,28,53,87,73,111,60),(9,54,112,38,88,61,15,74),(10,39,16,55,89,75,99,62),(11,56,100,40,90,63,17,76),(12,41,18,43,91,77,101,64),(13,44,102,42,92,65,19,78),(14,29,20,45,93,79,103,66)], [(15,112),(16,99),(17,100),(18,101),(19,102),(20,103),(21,104),(22,105),(23,106),(24,107),(25,108),(26,109),(27,110),(28,111),(29,66),(30,67),(31,68),(32,69),(33,70),(34,57),(35,58),(36,59),(37,60),(38,61),(39,62),(40,63),(41,64),(42,65),(43,77),(44,78),(45,79),(46,80),(47,81),(48,82),(49,83),(50,84),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,110),(2,109),(3,108),(4,107),(5,106),(6,105),(7,104),(8,103),(9,102),(10,101),(11,100),(12,99),(13,112),(14,111),(15,92),(16,91),(17,90),(18,89),(19,88),(20,87),(21,86),(22,85),(23,98),(24,97),(25,96),(26,95),(27,94),(28,93),(29,37),(30,36),(31,35),(32,34),(38,42),(39,41),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57),(49,70),(50,69),(51,68),(52,67),(53,66),(54,65),(55,64),(56,63),(71,81),(72,80),(73,79),(74,78),(75,77),(82,84)])

Matrix representation G ⊆ GL6(𝔽113)

100000
010000
00009122
00360260
00771310013
00010010013
,
11200000
01120000
001000
008111200
000010
003200112
,
23100000
93110000
0011201060
00001121
000010
000110
,
10310000
14100000
00112700
000100
0001120112
0001121120

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,77,0,0,0,0,0,13,100,0,0,91,26,100,100,0,0,22,0,13,13],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,81,0,32,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,112],[23,93,0,0,0,0,10,11,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,106,112,1,1,0,0,0,1,0,0],[103,14,0,0,0,0,1,10,0,0,0,0,0,0,112,0,0,0,0,0,7,1,112,112,0,0,0,0,0,112,0,0,0,0,112,0] >;

55 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D8E14A14B14C14D14E14F14G···14O28A···28F28G28H28I56A···56F
order122222222444444447778888814141414141414···1428···2828282856···56
size1124441414282241414282828222441414282224448···84···48888···8

55 irreducible representations

dim1111111111112222222224448
type+++++++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14D4○SD16D4×D7D4×D7D86D14
kernelD86D14D28.C4C8.D14D8⋊D7D83D7D7×SD16SD16⋊D7C2×D4.D7D4.8D14C7×C8⋊C22D46D14D4.10D14Dic14D28C7⋊D4C8⋊C22M4(2)D8SD16C2×D4C4○D4C7C4C22C1
# reps1112222111111123366332333

In GAP, Magma, Sage, TeX

D_8\rtimes_6D_{14}
% in TeX

G:=Group("D8:6D14");
// GroupNames label

G:=SmallGroup(448,1228);
// by ID

G=gap.SmallGroup(448,1228);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,570,185,136,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^3,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽