Copied to
clipboard

?

G = C2×D20⋊S3order 480 = 25·3·5

Direct product of C2 and D20⋊S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D20⋊S3, D2022D6, C30.3C24, Dic620D10, C60.158C23, D30.32C23, Dic15.34C23, (C6×D20)⋊12C2, (C2×D20)⋊12S3, C302(C4○D4), C6.3(C23×D5), C62(Q82D5), (C2×Dic6)⋊12D5, (C2×C20).162D6, C3⋊D208C22, C10.3(S3×C23), C101(D42S3), (C6×D5).2C23, (C10×Dic6)⋊12C2, (C2×C12).160D10, (C4×D15)⋊21C22, (C3×D20)⋊29C22, (D5×Dic3)⋊6C22, D10.2(C22×S3), (C22×D5).68D6, (C2×C60).207C22, C20.122(C22×S3), (C2×C30).222C23, (C5×Dic6)⋊26C22, C12.122(C22×D5), Dic3.2(C22×D5), (C5×Dic3).2C23, (C2×Dic3).129D10, (C2×Dic15).231C22, (C10×Dic3).127C22, (C22×D15).116C22, C152(C2×C4○D4), (C2×C4×D15)⋊24C2, C51(C2×D42S3), C32(C2×Q82D5), C4.131(C2×S3×D5), C2.7(C22×S3×D5), (C2×D5×Dic3)⋊20C2, (C2×C3⋊D20)⋊17C2, C22.94(C2×S3×D5), (C2×C4).217(S3×D5), (D5×C2×C6).59C22, (C2×C6).234(C22×D5), (C2×C10).234(C22×S3), SmallGroup(480,1075)

Series: Derived Chief Lower central Upper central

C1C30 — C2×D20⋊S3
C1C5C15C30C6×D5D5×Dic3C2×D5×Dic3 — C2×D20⋊S3
C15C30 — C2×D20⋊S3

Subgroups: 1596 in 328 conjugacy classes, 116 normal (24 characteristic)
C1, C2, C2 [×2], C2 [×6], C3, C4 [×2], C4 [×6], C22, C22 [×12], C5, S3 [×2], C6, C6 [×2], C6 [×4], C2×C4, C2×C4 [×15], D4 [×12], Q8 [×4], C23 [×3], D5 [×6], C10, C10 [×2], Dic3 [×4], Dic3 [×2], C12 [×2], D6 [×4], C2×C6, C2×C6 [×8], C15, C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5 [×2], C20 [×2], C20 [×4], D10 [×4], D10 [×8], C2×C10, Dic6 [×4], C4×S3 [×4], C2×Dic3 [×2], C2×Dic3 [×9], C3⋊D4 [×8], C2×C12, C3×D4 [×4], C22×S3, C22×C6 [×2], C3×D5 [×4], D15 [×2], C30, C30 [×2], C2×C4○D4, C4×D5 [×12], D20 [×4], D20 [×8], C2×Dic5, C2×C20, C2×C20 [×2], C5×Q8 [×4], C22×D5 [×2], C22×D5, C2×Dic6, S3×C2×C4, D42S3 [×8], C22×Dic3 [×2], C2×C3⋊D4 [×2], C6×D4, C5×Dic3 [×4], Dic15 [×2], C60 [×2], C6×D5 [×4], C6×D5 [×4], D30 [×2], D30 [×2], C2×C30, C2×C4×D5 [×3], C2×D20, C2×D20 [×2], Q82D5 [×8], Q8×C10, C2×D42S3, D5×Dic3 [×8], C3⋊D20 [×8], C3×D20 [×4], C5×Dic6 [×4], C10×Dic3 [×2], C4×D15 [×4], C2×Dic15, C2×C60, D5×C2×C6 [×2], C22×D15, C2×Q82D5, D20⋊S3 [×8], C2×D5×Dic3 [×2], C2×C3⋊D20 [×2], C6×D20, C10×Dic6, C2×C4×D15, C2×D20⋊S3

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C4○D4 [×2], C24, D10 [×7], C22×S3 [×7], C2×C4○D4, C22×D5 [×7], D42S3 [×2], S3×C23, S3×D5, Q82D5 [×2], C23×D5, C2×D42S3, C2×S3×D5 [×3], C2×Q82D5, D20⋊S3 [×2], C22×S3×D5, C2×D20⋊S3

Generators and relations
 G = < a,b,c,d,e | a2=b20=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe=b9, cd=dc, ece=b18c, ede=d-1 >

Smallest permutation representation
On 240 points
Generators in S240
(1 215)(2 216)(3 217)(4 218)(5 219)(6 220)(7 201)(8 202)(9 203)(10 204)(11 205)(12 206)(13 207)(14 208)(15 209)(16 210)(17 211)(18 212)(19 213)(20 214)(21 129)(22 130)(23 131)(24 132)(25 133)(26 134)(27 135)(28 136)(29 137)(30 138)(31 139)(32 140)(33 121)(34 122)(35 123)(36 124)(37 125)(38 126)(39 127)(40 128)(41 224)(42 225)(43 226)(44 227)(45 228)(46 229)(47 230)(48 231)(49 232)(50 233)(51 234)(52 235)(53 236)(54 237)(55 238)(56 239)(57 240)(58 221)(59 222)(60 223)(61 184)(62 185)(63 186)(64 187)(65 188)(66 189)(67 190)(68 191)(69 192)(70 193)(71 194)(72 195)(73 196)(74 197)(75 198)(76 199)(77 200)(78 181)(79 182)(80 183)(81 152)(82 153)(83 154)(84 155)(85 156)(86 157)(87 158)(88 159)(89 160)(90 141)(91 142)(92 143)(93 144)(94 145)(95 146)(96 147)(97 148)(98 149)(99 150)(100 151)(101 168)(102 169)(103 170)(104 171)(105 172)(106 173)(107 174)(108 175)(109 176)(110 177)(111 178)(112 179)(113 180)(114 161)(115 162)(116 163)(117 164)(118 165)(119 166)(120 167)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220)(221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 30)(22 29)(23 28)(24 27)(25 26)(31 40)(32 39)(33 38)(34 37)(35 36)(41 60)(42 59)(43 58)(44 57)(45 56)(46 55)(47 54)(48 53)(49 52)(50 51)(61 72)(62 71)(63 70)(64 69)(65 68)(66 67)(73 80)(74 79)(75 78)(76 77)(81 100)(82 99)(83 98)(84 97)(85 96)(86 95)(87 94)(88 93)(89 92)(90 91)(101 112)(102 111)(103 110)(104 109)(105 108)(106 107)(113 120)(114 119)(115 118)(116 117)(121 126)(122 125)(123 124)(127 140)(128 139)(129 138)(130 137)(131 136)(132 135)(133 134)(141 142)(143 160)(144 159)(145 158)(146 157)(147 156)(148 155)(149 154)(150 153)(151 152)(161 166)(162 165)(163 164)(167 180)(168 179)(169 178)(170 177)(171 176)(172 175)(173 174)(181 198)(182 197)(183 196)(184 195)(185 194)(186 193)(187 192)(188 191)(189 190)(199 200)(201 208)(202 207)(203 206)(204 205)(209 220)(210 219)(211 218)(212 217)(213 216)(214 215)(221 226)(222 225)(223 224)(227 240)(228 239)(229 238)(230 237)(231 236)(232 235)(233 234)
(1 107 152)(2 108 153)(3 109 154)(4 110 155)(5 111 156)(6 112 157)(7 113 158)(8 114 159)(9 115 160)(10 116 141)(11 117 142)(12 118 143)(13 119 144)(14 120 145)(15 101 146)(16 102 147)(17 103 148)(18 104 149)(19 105 150)(20 106 151)(21 56 195)(22 57 196)(23 58 197)(24 59 198)(25 60 199)(26 41 200)(27 42 181)(28 43 182)(29 44 183)(30 45 184)(31 46 185)(32 47 186)(33 48 187)(34 49 188)(35 50 189)(36 51 190)(37 52 191)(38 53 192)(39 54 193)(40 55 194)(61 138 228)(62 139 229)(63 140 230)(64 121 231)(65 122 232)(66 123 233)(67 124 234)(68 125 235)(69 126 236)(70 127 237)(71 128 238)(72 129 239)(73 130 240)(74 131 221)(75 132 222)(76 133 223)(77 134 224)(78 135 225)(79 136 226)(80 137 227)(81 215 174)(82 216 175)(83 217 176)(84 218 177)(85 219 178)(86 220 179)(87 201 180)(88 202 161)(89 203 162)(90 204 163)(91 205 164)(92 206 165)(93 207 166)(94 208 167)(95 209 168)(96 210 169)(97 211 170)(98 212 171)(99 213 172)(100 214 173)
(1 129)(2 138)(3 127)(4 136)(5 125)(6 134)(7 123)(8 132)(9 121)(10 130)(11 139)(12 128)(13 137)(14 126)(15 135)(16 124)(17 133)(18 122)(19 131)(20 140)(21 215)(22 204)(23 213)(24 202)(25 211)(26 220)(27 209)(28 218)(29 207)(30 216)(31 205)(32 214)(33 203)(34 212)(35 201)(36 210)(37 219)(38 208)(39 217)(40 206)(41 86)(42 95)(43 84)(44 93)(45 82)(46 91)(47 100)(48 89)(49 98)(50 87)(51 96)(52 85)(53 94)(54 83)(55 92)(56 81)(57 90)(58 99)(59 88)(60 97)(61 108)(62 117)(63 106)(64 115)(65 104)(66 113)(67 102)(68 111)(69 120)(70 109)(71 118)(72 107)(73 116)(74 105)(75 114)(76 103)(77 112)(78 101)(79 110)(80 119)(141 240)(142 229)(143 238)(144 227)(145 236)(146 225)(147 234)(148 223)(149 232)(150 221)(151 230)(152 239)(153 228)(154 237)(155 226)(156 235)(157 224)(158 233)(159 222)(160 231)(161 198)(162 187)(163 196)(164 185)(165 194)(166 183)(167 192)(168 181)(169 190)(170 199)(171 188)(172 197)(173 186)(174 195)(175 184)(176 193)(177 182)(178 191)(179 200)(180 189)

G:=sub<Sym(240)| (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,201)(8,202)(9,203)(10,204)(11,205)(12,206)(13,207)(14,208)(15,209)(16,210)(17,211)(18,212)(19,213)(20,214)(21,129)(22,130)(23,131)(24,132)(25,133)(26,134)(27,135)(28,136)(29,137)(30,138)(31,139)(32,140)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,224)(42,225)(43,226)(44,227)(45,228)(46,229)(47,230)(48,231)(49,232)(50,233)(51,234)(52,235)(53,236)(54,237)(55,238)(56,239)(57,240)(58,221)(59,222)(60,223)(61,184)(62,185)(63,186)(64,187)(65,188)(66,189)(67,190)(68,191)(69,192)(70,193)(71,194)(72,195)(73,196)(74,197)(75,198)(76,199)(77,200)(78,181)(79,182)(80,183)(81,152)(82,153)(83,154)(84,155)(85,156)(86,157)(87,158)(88,159)(89,160)(90,141)(91,142)(92,143)(93,144)(94,145)(95,146)(96,147)(97,148)(98,149)(99,150)(100,151)(101,168)(102,169)(103,170)(104,171)(105,172)(106,173)(107,174)(108,175)(109,176)(110,177)(111,178)(112,179)(113,180)(114,161)(115,162)(116,163)(117,164)(118,165)(119,166)(120,167), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,72)(62,71)(63,70)(64,69)(65,68)(66,67)(73,80)(74,79)(75,78)(76,77)(81,100)(82,99)(83,98)(84,97)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107)(113,120)(114,119)(115,118)(116,117)(121,126)(122,125)(123,124)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)(133,134)(141,142)(143,160)(144,159)(145,158)(146,157)(147,156)(148,155)(149,154)(150,153)(151,152)(161,166)(162,165)(163,164)(167,180)(168,179)(169,178)(170,177)(171,176)(172,175)(173,174)(181,198)(182,197)(183,196)(184,195)(185,194)(186,193)(187,192)(188,191)(189,190)(199,200)(201,208)(202,207)(203,206)(204,205)(209,220)(210,219)(211,218)(212,217)(213,216)(214,215)(221,226)(222,225)(223,224)(227,240)(228,239)(229,238)(230,237)(231,236)(232,235)(233,234), (1,107,152)(2,108,153)(3,109,154)(4,110,155)(5,111,156)(6,112,157)(7,113,158)(8,114,159)(9,115,160)(10,116,141)(11,117,142)(12,118,143)(13,119,144)(14,120,145)(15,101,146)(16,102,147)(17,103,148)(18,104,149)(19,105,150)(20,106,151)(21,56,195)(22,57,196)(23,58,197)(24,59,198)(25,60,199)(26,41,200)(27,42,181)(28,43,182)(29,44,183)(30,45,184)(31,46,185)(32,47,186)(33,48,187)(34,49,188)(35,50,189)(36,51,190)(37,52,191)(38,53,192)(39,54,193)(40,55,194)(61,138,228)(62,139,229)(63,140,230)(64,121,231)(65,122,232)(66,123,233)(67,124,234)(68,125,235)(69,126,236)(70,127,237)(71,128,238)(72,129,239)(73,130,240)(74,131,221)(75,132,222)(76,133,223)(77,134,224)(78,135,225)(79,136,226)(80,137,227)(81,215,174)(82,216,175)(83,217,176)(84,218,177)(85,219,178)(86,220,179)(87,201,180)(88,202,161)(89,203,162)(90,204,163)(91,205,164)(92,206,165)(93,207,166)(94,208,167)(95,209,168)(96,210,169)(97,211,170)(98,212,171)(99,213,172)(100,214,173), (1,129)(2,138)(3,127)(4,136)(5,125)(6,134)(7,123)(8,132)(9,121)(10,130)(11,139)(12,128)(13,137)(14,126)(15,135)(16,124)(17,133)(18,122)(19,131)(20,140)(21,215)(22,204)(23,213)(24,202)(25,211)(26,220)(27,209)(28,218)(29,207)(30,216)(31,205)(32,214)(33,203)(34,212)(35,201)(36,210)(37,219)(38,208)(39,217)(40,206)(41,86)(42,95)(43,84)(44,93)(45,82)(46,91)(47,100)(48,89)(49,98)(50,87)(51,96)(52,85)(53,94)(54,83)(55,92)(56,81)(57,90)(58,99)(59,88)(60,97)(61,108)(62,117)(63,106)(64,115)(65,104)(66,113)(67,102)(68,111)(69,120)(70,109)(71,118)(72,107)(73,116)(74,105)(75,114)(76,103)(77,112)(78,101)(79,110)(80,119)(141,240)(142,229)(143,238)(144,227)(145,236)(146,225)(147,234)(148,223)(149,232)(150,221)(151,230)(152,239)(153,228)(154,237)(155,226)(156,235)(157,224)(158,233)(159,222)(160,231)(161,198)(162,187)(163,196)(164,185)(165,194)(166,183)(167,192)(168,181)(169,190)(170,199)(171,188)(172,197)(173,186)(174,195)(175,184)(176,193)(177,182)(178,191)(179,200)(180,189)>;

G:=Group( (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,201)(8,202)(9,203)(10,204)(11,205)(12,206)(13,207)(14,208)(15,209)(16,210)(17,211)(18,212)(19,213)(20,214)(21,129)(22,130)(23,131)(24,132)(25,133)(26,134)(27,135)(28,136)(29,137)(30,138)(31,139)(32,140)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,224)(42,225)(43,226)(44,227)(45,228)(46,229)(47,230)(48,231)(49,232)(50,233)(51,234)(52,235)(53,236)(54,237)(55,238)(56,239)(57,240)(58,221)(59,222)(60,223)(61,184)(62,185)(63,186)(64,187)(65,188)(66,189)(67,190)(68,191)(69,192)(70,193)(71,194)(72,195)(73,196)(74,197)(75,198)(76,199)(77,200)(78,181)(79,182)(80,183)(81,152)(82,153)(83,154)(84,155)(85,156)(86,157)(87,158)(88,159)(89,160)(90,141)(91,142)(92,143)(93,144)(94,145)(95,146)(96,147)(97,148)(98,149)(99,150)(100,151)(101,168)(102,169)(103,170)(104,171)(105,172)(106,173)(107,174)(108,175)(109,176)(110,177)(111,178)(112,179)(113,180)(114,161)(115,162)(116,163)(117,164)(118,165)(119,166)(120,167), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,72)(62,71)(63,70)(64,69)(65,68)(66,67)(73,80)(74,79)(75,78)(76,77)(81,100)(82,99)(83,98)(84,97)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107)(113,120)(114,119)(115,118)(116,117)(121,126)(122,125)(123,124)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)(133,134)(141,142)(143,160)(144,159)(145,158)(146,157)(147,156)(148,155)(149,154)(150,153)(151,152)(161,166)(162,165)(163,164)(167,180)(168,179)(169,178)(170,177)(171,176)(172,175)(173,174)(181,198)(182,197)(183,196)(184,195)(185,194)(186,193)(187,192)(188,191)(189,190)(199,200)(201,208)(202,207)(203,206)(204,205)(209,220)(210,219)(211,218)(212,217)(213,216)(214,215)(221,226)(222,225)(223,224)(227,240)(228,239)(229,238)(230,237)(231,236)(232,235)(233,234), (1,107,152)(2,108,153)(3,109,154)(4,110,155)(5,111,156)(6,112,157)(7,113,158)(8,114,159)(9,115,160)(10,116,141)(11,117,142)(12,118,143)(13,119,144)(14,120,145)(15,101,146)(16,102,147)(17,103,148)(18,104,149)(19,105,150)(20,106,151)(21,56,195)(22,57,196)(23,58,197)(24,59,198)(25,60,199)(26,41,200)(27,42,181)(28,43,182)(29,44,183)(30,45,184)(31,46,185)(32,47,186)(33,48,187)(34,49,188)(35,50,189)(36,51,190)(37,52,191)(38,53,192)(39,54,193)(40,55,194)(61,138,228)(62,139,229)(63,140,230)(64,121,231)(65,122,232)(66,123,233)(67,124,234)(68,125,235)(69,126,236)(70,127,237)(71,128,238)(72,129,239)(73,130,240)(74,131,221)(75,132,222)(76,133,223)(77,134,224)(78,135,225)(79,136,226)(80,137,227)(81,215,174)(82,216,175)(83,217,176)(84,218,177)(85,219,178)(86,220,179)(87,201,180)(88,202,161)(89,203,162)(90,204,163)(91,205,164)(92,206,165)(93,207,166)(94,208,167)(95,209,168)(96,210,169)(97,211,170)(98,212,171)(99,213,172)(100,214,173), (1,129)(2,138)(3,127)(4,136)(5,125)(6,134)(7,123)(8,132)(9,121)(10,130)(11,139)(12,128)(13,137)(14,126)(15,135)(16,124)(17,133)(18,122)(19,131)(20,140)(21,215)(22,204)(23,213)(24,202)(25,211)(26,220)(27,209)(28,218)(29,207)(30,216)(31,205)(32,214)(33,203)(34,212)(35,201)(36,210)(37,219)(38,208)(39,217)(40,206)(41,86)(42,95)(43,84)(44,93)(45,82)(46,91)(47,100)(48,89)(49,98)(50,87)(51,96)(52,85)(53,94)(54,83)(55,92)(56,81)(57,90)(58,99)(59,88)(60,97)(61,108)(62,117)(63,106)(64,115)(65,104)(66,113)(67,102)(68,111)(69,120)(70,109)(71,118)(72,107)(73,116)(74,105)(75,114)(76,103)(77,112)(78,101)(79,110)(80,119)(141,240)(142,229)(143,238)(144,227)(145,236)(146,225)(147,234)(148,223)(149,232)(150,221)(151,230)(152,239)(153,228)(154,237)(155,226)(156,235)(157,224)(158,233)(159,222)(160,231)(161,198)(162,187)(163,196)(164,185)(165,194)(166,183)(167,192)(168,181)(169,190)(170,199)(171,188)(172,197)(173,186)(174,195)(175,184)(176,193)(177,182)(178,191)(179,200)(180,189) );

G=PermutationGroup([(1,215),(2,216),(3,217),(4,218),(5,219),(6,220),(7,201),(8,202),(9,203),(10,204),(11,205),(12,206),(13,207),(14,208),(15,209),(16,210),(17,211),(18,212),(19,213),(20,214),(21,129),(22,130),(23,131),(24,132),(25,133),(26,134),(27,135),(28,136),(29,137),(30,138),(31,139),(32,140),(33,121),(34,122),(35,123),(36,124),(37,125),(38,126),(39,127),(40,128),(41,224),(42,225),(43,226),(44,227),(45,228),(46,229),(47,230),(48,231),(49,232),(50,233),(51,234),(52,235),(53,236),(54,237),(55,238),(56,239),(57,240),(58,221),(59,222),(60,223),(61,184),(62,185),(63,186),(64,187),(65,188),(66,189),(67,190),(68,191),(69,192),(70,193),(71,194),(72,195),(73,196),(74,197),(75,198),(76,199),(77,200),(78,181),(79,182),(80,183),(81,152),(82,153),(83,154),(84,155),(85,156),(86,157),(87,158),(88,159),(89,160),(90,141),(91,142),(92,143),(93,144),(94,145),(95,146),(96,147),(97,148),(98,149),(99,150),(100,151),(101,168),(102,169),(103,170),(104,171),(105,172),(106,173),(107,174),(108,175),(109,176),(110,177),(111,178),(112,179),(113,180),(114,161),(115,162),(116,163),(117,164),(118,165),(119,166),(120,167)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220),(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,30),(22,29),(23,28),(24,27),(25,26),(31,40),(32,39),(33,38),(34,37),(35,36),(41,60),(42,59),(43,58),(44,57),(45,56),(46,55),(47,54),(48,53),(49,52),(50,51),(61,72),(62,71),(63,70),(64,69),(65,68),(66,67),(73,80),(74,79),(75,78),(76,77),(81,100),(82,99),(83,98),(84,97),(85,96),(86,95),(87,94),(88,93),(89,92),(90,91),(101,112),(102,111),(103,110),(104,109),(105,108),(106,107),(113,120),(114,119),(115,118),(116,117),(121,126),(122,125),(123,124),(127,140),(128,139),(129,138),(130,137),(131,136),(132,135),(133,134),(141,142),(143,160),(144,159),(145,158),(146,157),(147,156),(148,155),(149,154),(150,153),(151,152),(161,166),(162,165),(163,164),(167,180),(168,179),(169,178),(170,177),(171,176),(172,175),(173,174),(181,198),(182,197),(183,196),(184,195),(185,194),(186,193),(187,192),(188,191),(189,190),(199,200),(201,208),(202,207),(203,206),(204,205),(209,220),(210,219),(211,218),(212,217),(213,216),(214,215),(221,226),(222,225),(223,224),(227,240),(228,239),(229,238),(230,237),(231,236),(232,235),(233,234)], [(1,107,152),(2,108,153),(3,109,154),(4,110,155),(5,111,156),(6,112,157),(7,113,158),(8,114,159),(9,115,160),(10,116,141),(11,117,142),(12,118,143),(13,119,144),(14,120,145),(15,101,146),(16,102,147),(17,103,148),(18,104,149),(19,105,150),(20,106,151),(21,56,195),(22,57,196),(23,58,197),(24,59,198),(25,60,199),(26,41,200),(27,42,181),(28,43,182),(29,44,183),(30,45,184),(31,46,185),(32,47,186),(33,48,187),(34,49,188),(35,50,189),(36,51,190),(37,52,191),(38,53,192),(39,54,193),(40,55,194),(61,138,228),(62,139,229),(63,140,230),(64,121,231),(65,122,232),(66,123,233),(67,124,234),(68,125,235),(69,126,236),(70,127,237),(71,128,238),(72,129,239),(73,130,240),(74,131,221),(75,132,222),(76,133,223),(77,134,224),(78,135,225),(79,136,226),(80,137,227),(81,215,174),(82,216,175),(83,217,176),(84,218,177),(85,219,178),(86,220,179),(87,201,180),(88,202,161),(89,203,162),(90,204,163),(91,205,164),(92,206,165),(93,207,166),(94,208,167),(95,209,168),(96,210,169),(97,211,170),(98,212,171),(99,213,172),(100,214,173)], [(1,129),(2,138),(3,127),(4,136),(5,125),(6,134),(7,123),(8,132),(9,121),(10,130),(11,139),(12,128),(13,137),(14,126),(15,135),(16,124),(17,133),(18,122),(19,131),(20,140),(21,215),(22,204),(23,213),(24,202),(25,211),(26,220),(27,209),(28,218),(29,207),(30,216),(31,205),(32,214),(33,203),(34,212),(35,201),(36,210),(37,219),(38,208),(39,217),(40,206),(41,86),(42,95),(43,84),(44,93),(45,82),(46,91),(47,100),(48,89),(49,98),(50,87),(51,96),(52,85),(53,94),(54,83),(55,92),(56,81),(57,90),(58,99),(59,88),(60,97),(61,108),(62,117),(63,106),(64,115),(65,104),(66,113),(67,102),(68,111),(69,120),(70,109),(71,118),(72,107),(73,116),(74,105),(75,114),(76,103),(77,112),(78,101),(79,110),(80,119),(141,240),(142,229),(143,238),(144,227),(145,236),(146,225),(147,234),(148,223),(149,232),(150,221),(151,230),(152,239),(153,228),(154,237),(155,226),(156,235),(157,224),(158,233),(159,222),(160,231),(161,198),(162,187),(163,196),(164,185),(165,194),(166,183),(167,192),(168,181),(169,190),(170,199),(171,188),(172,197),(173,186),(174,195),(175,184),(176,193),(177,182),(178,191),(179,200),(180,189)])

Matrix representation G ⊆ GL6(𝔽61)

6000000
0600000
0060000
0006000
0000600
0000060
,
6000000
0600000
000100
00601800
00004546
0000916
,
6000000
0600000
0043100
00431800
00004546
00001716
,
010000
60600000
001000
000100
000010
000001
,
39480000
9220000
00431800
00601800
00005443
0000237

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,1,18,0,0,0,0,0,0,45,9,0,0,0,0,46,16],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,43,43,0,0,0,0,1,18,0,0,0,0,0,0,45,17,0,0,0,0,46,16],[0,60,0,0,0,0,1,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[39,9,0,0,0,0,48,22,0,0,0,0,0,0,43,60,0,0,0,0,18,18,0,0,0,0,0,0,54,23,0,0,0,0,43,7] >;

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J5A5B6A6B6C6D6E6F6G10A···10F12A12B15A15B20A20B20C20D20E···20L30A···30F60A···60H
order12222222223444444444455666666610···10121215152020202020···2030···3060···60
size111110101010303022266661515151522222202020202···24444444412···124···44···4

66 irreducible representations

dim1111111222222222444444
type+++++++++++++++-++++
imageC1C2C2C2C2C2C2S3D5D6D6D6C4○D4D10D10D10D42S3S3×D5Q82D5C2×S3×D5C2×S3×D5D20⋊S3
kernelC2×D20⋊S3D20⋊S3C2×D5×Dic3C2×C3⋊D20C6×D20C10×Dic6C2×C4×D15C2×D20C2×Dic6D20C2×C20C22×D5C30Dic6C2×Dic3C2×C12C10C2×C4C6C4C22C2
# reps1822111124124842224428

In GAP, Magma, Sage, TeX

C_2\times D_{20}\rtimes S_3
% in TeX

G:=Group("C2xD20:S3");
// GroupNames label

G:=SmallGroup(480,1075);
// by ID

G=gap.SmallGroup(480,1075);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,120,675,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^20=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e=b^9,c*d=d*c,e*c*e=b^18*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽