Copied to
clipboard

?

G = C2×D60⋊C2order 480 = 25·3·5

Direct product of C2 and D60⋊C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D60⋊C2, C30.9C24, Dic1024D6, D6031C22, D30.3C23, C60.113C23, (C2×D60)⋊23C2, (C4×S3)⋊15D10, C61(C4○D20), C304(C4○D4), C6.9(C23×D5), (C6×Dic10)⋊8C2, (C2×C20).307D6, C5⋊D129C22, C10.9(S3×C23), (S3×C20)⋊17C22, C101(Q83S3), (C2×Dic10)⋊15S3, (C2×C12).166D10, D30.C25C22, D6.23(C22×D5), (S3×C10).26C23, C20.162(C22×S3), (C2×C60).126C22, (C2×C30).228C23, (C2×Dic5).137D6, (C22×S3).81D10, C12.127(C22×D5), (C3×Dic5).6C23, Dic5.6(C22×S3), (C2×Dic3).190D10, (C3×Dic10)⋊21C22, (C5×Dic3).27C23, Dic3.33(C22×D5), (C6×Dic5).129C22, (C22×D15).72C22, (C10×Dic3).208C22, (S3×C2×C4)⋊4D5, (S3×C2×C20)⋊5C2, C154(C2×C4○D4), C31(C2×C4○D20), C51(C2×Q83S3), C4.111(C2×S3×D5), (C2×C5⋊D12)⋊18C2, C22.97(C2×S3×D5), C2.13(C22×S3×D5), (C2×C4).117(S3×D5), (C2×D30.C2)⋊19C2, (S3×C2×C10).99C22, (C2×C6).238(C22×D5), (C2×C10).238(C22×S3), SmallGroup(480,1081)

Series: Derived Chief Lower central Upper central

C1C30 — C2×D60⋊C2
C1C5C15C30C3×Dic5D30.C2C2×D30.C2 — C2×D60⋊C2
C15C30 — C2×D60⋊C2

Subgroups: 1660 in 328 conjugacy classes, 116 normal (26 characteristic)
C1, C2, C2 [×2], C2 [×6], C3, C4 [×2], C4 [×6], C22, C22 [×12], C5, S3 [×6], C6, C6 [×2], C2×C4, C2×C4 [×15], D4 [×12], Q8 [×4], C23 [×3], D5 [×4], C10, C10 [×2], C10 [×2], Dic3 [×2], C12 [×2], C12 [×4], D6 [×2], D6 [×10], C2×C6, C15, C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5 [×4], C20 [×2], C20 [×2], D10 [×8], C2×C10, C2×C10 [×4], C4×S3 [×4], C4×S3 [×8], D12 [×12], C2×Dic3, C2×C12, C2×C12 [×2], C3×Q8 [×4], C22×S3, C22×S3 [×2], C5×S3 [×2], D15 [×4], C30, C30 [×2], C2×C4○D4, Dic10 [×4], C4×D5 [×8], D20 [×4], C2×Dic5 [×2], C5⋊D4 [×8], C2×C20, C2×C20 [×5], C22×D5 [×2], C22×C10, S3×C2×C4, S3×C2×C4 [×2], C2×D12 [×3], Q83S3 [×8], C6×Q8, C5×Dic3 [×2], C3×Dic5 [×4], C60 [×2], S3×C10 [×2], S3×C10 [×2], D30 [×4], D30 [×4], C2×C30, C2×Dic10, C2×C4×D5 [×2], C2×D20, C4○D20 [×8], C2×C5⋊D4 [×2], C22×C20, C2×Q83S3, D30.C2 [×8], C5⋊D12 [×8], C3×Dic10 [×4], C6×Dic5 [×2], S3×C20 [×4], C10×Dic3, D60 [×4], C2×C60, S3×C2×C10, C22×D15 [×2], C2×C4○D20, D60⋊C2 [×8], C2×D30.C2 [×2], C2×C5⋊D12 [×2], C6×Dic10, S3×C2×C20, C2×D60, C2×D60⋊C2

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C4○D4 [×2], C24, D10 [×7], C22×S3 [×7], C2×C4○D4, C22×D5 [×7], Q83S3 [×2], S3×C23, S3×D5, C4○D20 [×2], C23×D5, C2×Q83S3, C2×S3×D5 [×3], C2×C4○D20, D60⋊C2 [×2], C22×S3×D5, C2×D60⋊C2

Generators and relations
 G = < a,b,c,d | a2=b60=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd=b41, dcd=b10c >

Smallest permutation representation
On 240 points
Generators in S240
(1 70)(2 71)(3 72)(4 73)(5 74)(6 75)(7 76)(8 77)(9 78)(10 79)(11 80)(12 81)(13 82)(14 83)(15 84)(16 85)(17 86)(18 87)(19 88)(20 89)(21 90)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 100)(32 101)(33 102)(34 103)(35 104)(36 105)(37 106)(38 107)(39 108)(40 109)(41 110)(42 111)(43 112)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 120)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(121 206)(122 207)(123 208)(124 209)(125 210)(126 211)(127 212)(128 213)(129 214)(130 215)(131 216)(132 217)(133 218)(134 219)(135 220)(136 221)(137 222)(138 223)(139 224)(140 225)(141 226)(142 227)(143 228)(144 229)(145 230)(146 231)(147 232)(148 233)(149 234)(150 235)(151 236)(152 237)(153 238)(154 239)(155 240)(156 181)(157 182)(158 183)(159 184)(160 185)(161 186)(162 187)(163 188)(164 189)(165 190)(166 191)(167 192)(168 193)(169 194)(170 195)(171 196)(172 197)(173 198)(174 199)(175 200)(176 201)(177 202)(178 203)(179 204)(180 205)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 69)(2 68)(3 67)(4 66)(5 65)(6 64)(7 63)(8 62)(9 61)(10 120)(11 119)(12 118)(13 117)(14 116)(15 115)(16 114)(17 113)(18 112)(19 111)(20 110)(21 109)(22 108)(23 107)(24 106)(25 105)(26 104)(27 103)(28 102)(29 101)(30 100)(31 99)(32 98)(33 97)(34 96)(35 95)(36 94)(37 93)(38 92)(39 91)(40 90)(41 89)(42 88)(43 87)(44 86)(45 85)(46 84)(47 83)(48 82)(49 81)(50 80)(51 79)(52 78)(53 77)(54 76)(55 75)(56 74)(57 73)(58 72)(59 71)(60 70)(121 229)(122 228)(123 227)(124 226)(125 225)(126 224)(127 223)(128 222)(129 221)(130 220)(131 219)(132 218)(133 217)(134 216)(135 215)(136 214)(137 213)(138 212)(139 211)(140 210)(141 209)(142 208)(143 207)(144 206)(145 205)(146 204)(147 203)(148 202)(149 201)(150 200)(151 199)(152 198)(153 197)(154 196)(155 195)(156 194)(157 193)(158 192)(159 191)(160 190)(161 189)(162 188)(163 187)(164 186)(165 185)(166 184)(167 183)(168 182)(169 181)(170 240)(171 239)(172 238)(173 237)(174 236)(175 235)(176 234)(177 233)(178 232)(179 231)(180 230)
(1 178)(2 159)(3 140)(4 121)(5 162)(6 143)(7 124)(8 165)(9 146)(10 127)(11 168)(12 149)(13 130)(14 171)(15 152)(16 133)(17 174)(18 155)(19 136)(20 177)(21 158)(22 139)(23 180)(24 161)(25 142)(26 123)(27 164)(28 145)(29 126)(30 167)(31 148)(32 129)(33 170)(34 151)(35 132)(36 173)(37 154)(38 135)(39 176)(40 157)(41 138)(42 179)(43 160)(44 141)(45 122)(46 163)(47 144)(48 125)(49 166)(50 147)(51 128)(52 169)(53 150)(54 131)(55 172)(56 153)(57 134)(58 175)(59 156)(60 137)(61 194)(62 235)(63 216)(64 197)(65 238)(66 219)(67 200)(68 181)(69 222)(70 203)(71 184)(72 225)(73 206)(74 187)(75 228)(76 209)(77 190)(78 231)(79 212)(80 193)(81 234)(82 215)(83 196)(84 237)(85 218)(86 199)(87 240)(88 221)(89 202)(90 183)(91 224)(92 205)(93 186)(94 227)(95 208)(96 189)(97 230)(98 211)(99 192)(100 233)(101 214)(102 195)(103 236)(104 217)(105 198)(106 239)(107 220)(108 201)(109 182)(110 223)(111 204)(112 185)(113 226)(114 207)(115 188)(116 229)(117 210)(118 191)(119 232)(120 213)

G:=sub<Sym(240)| (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(121,206)(122,207)(123,208)(124,209)(125,210)(126,211)(127,212)(128,213)(129,214)(130,215)(131,216)(132,217)(133,218)(134,219)(135,220)(136,221)(137,222)(138,223)(139,224)(140,225)(141,226)(142,227)(143,228)(144,229)(145,230)(146,231)(147,232)(148,233)(149,234)(150,235)(151,236)(152,237)(153,238)(154,239)(155,240)(156,181)(157,182)(158,183)(159,184)(160,185)(161,186)(162,187)(163,188)(164,189)(165,190)(166,191)(167,192)(168,193)(169,194)(170,195)(171,196)(172,197)(173,198)(174,199)(175,200)(176,201)(177,202)(178,203)(179,204)(180,205), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,120)(11,119)(12,118)(13,117)(14,116)(15,115)(16,114)(17,113)(18,112)(19,111)(20,110)(21,109)(22,108)(23,107)(24,106)(25,105)(26,104)(27,103)(28,102)(29,101)(30,100)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(41,89)(42,88)(43,87)(44,86)(45,85)(46,84)(47,83)(48,82)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,72)(59,71)(60,70)(121,229)(122,228)(123,227)(124,226)(125,225)(126,224)(127,223)(128,222)(129,221)(130,220)(131,219)(132,218)(133,217)(134,216)(135,215)(136,214)(137,213)(138,212)(139,211)(140,210)(141,209)(142,208)(143,207)(144,206)(145,205)(146,204)(147,203)(148,202)(149,201)(150,200)(151,199)(152,198)(153,197)(154,196)(155,195)(156,194)(157,193)(158,192)(159,191)(160,190)(161,189)(162,188)(163,187)(164,186)(165,185)(166,184)(167,183)(168,182)(169,181)(170,240)(171,239)(172,238)(173,237)(174,236)(175,235)(176,234)(177,233)(178,232)(179,231)(180,230), (1,178)(2,159)(3,140)(4,121)(5,162)(6,143)(7,124)(8,165)(9,146)(10,127)(11,168)(12,149)(13,130)(14,171)(15,152)(16,133)(17,174)(18,155)(19,136)(20,177)(21,158)(22,139)(23,180)(24,161)(25,142)(26,123)(27,164)(28,145)(29,126)(30,167)(31,148)(32,129)(33,170)(34,151)(35,132)(36,173)(37,154)(38,135)(39,176)(40,157)(41,138)(42,179)(43,160)(44,141)(45,122)(46,163)(47,144)(48,125)(49,166)(50,147)(51,128)(52,169)(53,150)(54,131)(55,172)(56,153)(57,134)(58,175)(59,156)(60,137)(61,194)(62,235)(63,216)(64,197)(65,238)(66,219)(67,200)(68,181)(69,222)(70,203)(71,184)(72,225)(73,206)(74,187)(75,228)(76,209)(77,190)(78,231)(79,212)(80,193)(81,234)(82,215)(83,196)(84,237)(85,218)(86,199)(87,240)(88,221)(89,202)(90,183)(91,224)(92,205)(93,186)(94,227)(95,208)(96,189)(97,230)(98,211)(99,192)(100,233)(101,214)(102,195)(103,236)(104,217)(105,198)(106,239)(107,220)(108,201)(109,182)(110,223)(111,204)(112,185)(113,226)(114,207)(115,188)(116,229)(117,210)(118,191)(119,232)(120,213)>;

G:=Group( (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,101)(33,102)(34,103)(35,104)(36,105)(37,106)(38,107)(39,108)(40,109)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(121,206)(122,207)(123,208)(124,209)(125,210)(126,211)(127,212)(128,213)(129,214)(130,215)(131,216)(132,217)(133,218)(134,219)(135,220)(136,221)(137,222)(138,223)(139,224)(140,225)(141,226)(142,227)(143,228)(144,229)(145,230)(146,231)(147,232)(148,233)(149,234)(150,235)(151,236)(152,237)(153,238)(154,239)(155,240)(156,181)(157,182)(158,183)(159,184)(160,185)(161,186)(162,187)(163,188)(164,189)(165,190)(166,191)(167,192)(168,193)(169,194)(170,195)(171,196)(172,197)(173,198)(174,199)(175,200)(176,201)(177,202)(178,203)(179,204)(180,205), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,120)(11,119)(12,118)(13,117)(14,116)(15,115)(16,114)(17,113)(18,112)(19,111)(20,110)(21,109)(22,108)(23,107)(24,106)(25,105)(26,104)(27,103)(28,102)(29,101)(30,100)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(41,89)(42,88)(43,87)(44,86)(45,85)(46,84)(47,83)(48,82)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,72)(59,71)(60,70)(121,229)(122,228)(123,227)(124,226)(125,225)(126,224)(127,223)(128,222)(129,221)(130,220)(131,219)(132,218)(133,217)(134,216)(135,215)(136,214)(137,213)(138,212)(139,211)(140,210)(141,209)(142,208)(143,207)(144,206)(145,205)(146,204)(147,203)(148,202)(149,201)(150,200)(151,199)(152,198)(153,197)(154,196)(155,195)(156,194)(157,193)(158,192)(159,191)(160,190)(161,189)(162,188)(163,187)(164,186)(165,185)(166,184)(167,183)(168,182)(169,181)(170,240)(171,239)(172,238)(173,237)(174,236)(175,235)(176,234)(177,233)(178,232)(179,231)(180,230), (1,178)(2,159)(3,140)(4,121)(5,162)(6,143)(7,124)(8,165)(9,146)(10,127)(11,168)(12,149)(13,130)(14,171)(15,152)(16,133)(17,174)(18,155)(19,136)(20,177)(21,158)(22,139)(23,180)(24,161)(25,142)(26,123)(27,164)(28,145)(29,126)(30,167)(31,148)(32,129)(33,170)(34,151)(35,132)(36,173)(37,154)(38,135)(39,176)(40,157)(41,138)(42,179)(43,160)(44,141)(45,122)(46,163)(47,144)(48,125)(49,166)(50,147)(51,128)(52,169)(53,150)(54,131)(55,172)(56,153)(57,134)(58,175)(59,156)(60,137)(61,194)(62,235)(63,216)(64,197)(65,238)(66,219)(67,200)(68,181)(69,222)(70,203)(71,184)(72,225)(73,206)(74,187)(75,228)(76,209)(77,190)(78,231)(79,212)(80,193)(81,234)(82,215)(83,196)(84,237)(85,218)(86,199)(87,240)(88,221)(89,202)(90,183)(91,224)(92,205)(93,186)(94,227)(95,208)(96,189)(97,230)(98,211)(99,192)(100,233)(101,214)(102,195)(103,236)(104,217)(105,198)(106,239)(107,220)(108,201)(109,182)(110,223)(111,204)(112,185)(113,226)(114,207)(115,188)(116,229)(117,210)(118,191)(119,232)(120,213) );

G=PermutationGroup([(1,70),(2,71),(3,72),(4,73),(5,74),(6,75),(7,76),(8,77),(9,78),(10,79),(11,80),(12,81),(13,82),(14,83),(15,84),(16,85),(17,86),(18,87),(19,88),(20,89),(21,90),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,100),(32,101),(33,102),(34,103),(35,104),(36,105),(37,106),(38,107),(39,108),(40,109),(41,110),(42,111),(43,112),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,120),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(121,206),(122,207),(123,208),(124,209),(125,210),(126,211),(127,212),(128,213),(129,214),(130,215),(131,216),(132,217),(133,218),(134,219),(135,220),(136,221),(137,222),(138,223),(139,224),(140,225),(141,226),(142,227),(143,228),(144,229),(145,230),(146,231),(147,232),(148,233),(149,234),(150,235),(151,236),(152,237),(153,238),(154,239),(155,240),(156,181),(157,182),(158,183),(159,184),(160,185),(161,186),(162,187),(163,188),(164,189),(165,190),(166,191),(167,192),(168,193),(169,194),(170,195),(171,196),(172,197),(173,198),(174,199),(175,200),(176,201),(177,202),(178,203),(179,204),(180,205)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,69),(2,68),(3,67),(4,66),(5,65),(6,64),(7,63),(8,62),(9,61),(10,120),(11,119),(12,118),(13,117),(14,116),(15,115),(16,114),(17,113),(18,112),(19,111),(20,110),(21,109),(22,108),(23,107),(24,106),(25,105),(26,104),(27,103),(28,102),(29,101),(30,100),(31,99),(32,98),(33,97),(34,96),(35,95),(36,94),(37,93),(38,92),(39,91),(40,90),(41,89),(42,88),(43,87),(44,86),(45,85),(46,84),(47,83),(48,82),(49,81),(50,80),(51,79),(52,78),(53,77),(54,76),(55,75),(56,74),(57,73),(58,72),(59,71),(60,70),(121,229),(122,228),(123,227),(124,226),(125,225),(126,224),(127,223),(128,222),(129,221),(130,220),(131,219),(132,218),(133,217),(134,216),(135,215),(136,214),(137,213),(138,212),(139,211),(140,210),(141,209),(142,208),(143,207),(144,206),(145,205),(146,204),(147,203),(148,202),(149,201),(150,200),(151,199),(152,198),(153,197),(154,196),(155,195),(156,194),(157,193),(158,192),(159,191),(160,190),(161,189),(162,188),(163,187),(164,186),(165,185),(166,184),(167,183),(168,182),(169,181),(170,240),(171,239),(172,238),(173,237),(174,236),(175,235),(176,234),(177,233),(178,232),(179,231),(180,230)], [(1,178),(2,159),(3,140),(4,121),(5,162),(6,143),(7,124),(8,165),(9,146),(10,127),(11,168),(12,149),(13,130),(14,171),(15,152),(16,133),(17,174),(18,155),(19,136),(20,177),(21,158),(22,139),(23,180),(24,161),(25,142),(26,123),(27,164),(28,145),(29,126),(30,167),(31,148),(32,129),(33,170),(34,151),(35,132),(36,173),(37,154),(38,135),(39,176),(40,157),(41,138),(42,179),(43,160),(44,141),(45,122),(46,163),(47,144),(48,125),(49,166),(50,147),(51,128),(52,169),(53,150),(54,131),(55,172),(56,153),(57,134),(58,175),(59,156),(60,137),(61,194),(62,235),(63,216),(64,197),(65,238),(66,219),(67,200),(68,181),(69,222),(70,203),(71,184),(72,225),(73,206),(74,187),(75,228),(76,209),(77,190),(78,231),(79,212),(80,193),(81,234),(82,215),(83,196),(84,237),(85,218),(86,199),(87,240),(88,221),(89,202),(90,183),(91,224),(92,205),(93,186),(94,227),(95,208),(96,189),(97,230),(98,211),(99,192),(100,233),(101,214),(102,195),(103,236),(104,217),(105,198),(106,239),(107,220),(108,201),(109,182),(110,223),(111,204),(112,185),(113,226),(114,207),(115,188),(116,229),(117,210),(118,191),(119,232),(120,213)])

Matrix representation G ⊆ GL4(𝔽61) generated by

1000
0100
00600
00060
,
273400
272500
00160
0010
,
273400
363400
00600
00601
,
311700
443000
0001
0010
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,60,0,0,0,0,60],[27,27,0,0,34,25,0,0,0,0,1,1,0,0,60,0],[27,36,0,0,34,34,0,0,0,0,60,60,0,0,0,1],[31,44,0,0,17,30,0,0,0,0,0,1,0,0,1,0] >;

78 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J5A5B6A6B6C10A···10F10G···10N12A12B12C12D12E12F15A15B20A···20H20I···20P30A···30F60A···60H
order1222222222344444444445566610···1010···10121212121212151520···2020···2030···3060···60
size11116630303030222333310101010222222···26···64420202020442···26···64···44···4

78 irreducible representations

dim11111112222222222244444
type+++++++++++++++++++++
imageC1C2C2C2C2C2C2S3D5D6D6D6C4○D4D10D10D10D10C4○D20Q83S3S3×D5C2×S3×D5C2×S3×D5D60⋊C2
kernelC2×D60⋊C2D60⋊C2C2×D30.C2C2×C5⋊D12C6×Dic10S3×C2×C20C2×D60C2×Dic10S3×C2×C4Dic10C2×Dic5C2×C20C30C4×S3C2×Dic3C2×C12C22×S3C6C10C2×C4C4C22C2
# reps182211112421482221622428

In GAP, Magma, Sage, TeX

C_2\times D_{60}\rtimes C_2
% in TeX

G:=Group("C2xD60:C2");
// GroupNames label

G:=SmallGroup(480,1081);
// by ID

G=gap.SmallGroup(480,1081);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,112,120,675,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^60=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d=b^41,d*c*d=b^10*c>;
// generators/relations

׿
×
𝔽