Copied to
clipboard

G = C3⋊C81D4order 192 = 26·3

1st semidirect product of C3⋊C8 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3⋊C81D4, C31(C8⋊D4), C4⋊C4.11D6, C4.D123C2, (C2×D4).28D6, C4.160(S3×D4), C6.Q168C2, (C2×C8).169D6, D4⋊C418S3, D63D4.5C2, C12.9(C4○D4), C12.110(C2×D4), C4.26(C4○D12), C6.17(C4⋊D4), C2.16(D8⋊S3), C6.34(C8⋊C22), C2.Dic1226C2, (C2×Dic3).22D4, (C6×D4).41C22, (C22×S3).12D4, C22.178(S3×D4), C2.20(Dic3⋊D4), (C2×C12).220C23, (C2×C24).229C22, C2.12(D4.D6), C6.30(C8.C22), C4⋊Dic3.74C22, (C2×Dic6).58C22, (C2×D4.S3)⋊5C2, (C2×C8⋊S3)⋊17C2, (C2×C6).233(C2×D4), (C2×C3⋊C8).18C22, (S3×C2×C4).12C22, (C3×D4⋊C4)⋊29C2, (C3×C4⋊C4).21C22, (C2×C4).327(C22×S3), SmallGroup(192,339)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C3⋊C81D4
C1C3C6C12C2×C12S3×C2×C4D63D4 — C3⋊C81D4
C3C6C2×C12 — C3⋊C81D4
C1C22C2×C4D4⋊C4

Generators and relations for C3⋊C81D4
 G = < a,b,c,d | a3=b8=c4=d2=1, bab-1=cac-1=dad=a-1, cbc-1=b-1, dbd=b5, dcd=c-1 >

Subgroups: 376 in 120 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, D4⋊C4, Q8⋊C4, C2.D8, C4⋊D4, C22⋊Q8, C2×M4(2), C2×SD16, C8⋊S3, C2×C3⋊C8, C4⋊Dic3, C4⋊Dic3, D6⋊C4, D4.S3, C6.D4, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C2×C3⋊D4, C6×D4, C8⋊D4, C6.Q16, C2.Dic12, C3×D4⋊C4, C4.D12, C2×C8⋊S3, C2×D4.S3, D63D4, C3⋊C81D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4⋊D4, C8⋊C22, C8.C22, C4○D12, S3×D4, C8⋊D4, Dic3⋊D4, D8⋊S3, D4.D6, C3⋊C81D4

Character table of C3⋊C81D4

 class 12A2B2C2D2E34A4B4C4D4E4F6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
 size 111181222281224242228844121244884444
ρ1111111111111111111111111111111    trivial
ρ21111-11111-11-1-1111-1-1111111-1-11111    linear of order 2
ρ311111-11111-1-1-11111111-1-111111111    linear of order 2
ρ41111-1-1111-1-111111-1-111-1-111-1-11111    linear of order 2
ρ51111-1-11111-11-1111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ611111-1111-1-1-1111111-1-11111-1-1-1-1-1-1    linear of order 2
ρ71111-1111111-11111-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ8111111111-111-111111-1-1-1-111-1-1-1-1-1-1    linear of order 2
ρ92222-20-122-2000-1-1-1112200-1-111-1-1-1-1    orthogonal lifted from D6
ρ1022-2-20022-200002-2-200002-22-2000000    orthogonal lifted from D4
ρ11222220-122-2000-1-1-1-1-1-2-200-1-1111111    orthogonal lifted from D6
ρ1222220-22-2-20200222000000-2-2000000    orthogonal lifted from D4
ρ1322-2-20022-200002-2-20000-222-2000000    orthogonal lifted from D4
ρ142222022-2-20-200222000000-2-2000000    orthogonal lifted from D4
ρ152222-20-1222000-1-1-111-2-200-1-1-1-11111    orthogonal lifted from D6
ρ16222220-1222000-1-1-1-1-12200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1722-2-2002-2200002-2-2002i-2i00-2200-2i-2i2i2i    complex lifted from C4○D4
ρ1822-2-2002-2200002-2-200-2i2i00-22002i2i-2i-2i    complex lifted from C4○D4
ρ1922-2-200-1-220000-111--3-3-2i2i001-13-3-i-iii    complex lifted from C4○D12
ρ2022-2-200-1-220000-111-3--32i-2i001-13-3ii-i-i    complex lifted from C4○D12
ρ2122-2-200-1-220000-111--3-32i-2i001-1-33ii-i-i    complex lifted from C4○D12
ρ2222-2-200-1-220000-111-3--3-2i2i001-1-33-i-iii    complex lifted from C4○D12
ρ234-44-4004000000-4-4400000000000000    orthogonal lifted from C8⋊C22
ρ24444400-2-4-40000-2-2-200000022000000    orthogonal lifted from S3×D4
ρ2544-4-400-24-40000-222000000-22000000    orthogonal lifted from S3×D4
ρ264-4-44004000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ274-4-4400-20000002-220000000000-66-66    symplectic lifted from D4.D6, Schur index 2
ρ284-4-4400-20000002-2200000000006-66-6    symplectic lifted from D4.D6, Schur index 2
ρ294-44-400-200000022-20000000000--6-6-6--6    complex lifted from D8⋊S3
ρ304-44-400-200000022-20000000000-6--6--6-6    complex lifted from D8⋊S3

Smallest permutation representation of C3⋊C81D4
On 96 points
Generators in S96
(1 57 76)(2 77 58)(3 59 78)(4 79 60)(5 61 80)(6 73 62)(7 63 74)(8 75 64)(9 48 65)(10 66 41)(11 42 67)(12 68 43)(13 44 69)(14 70 45)(15 46 71)(16 72 47)(17 84 40)(18 33 85)(19 86 34)(20 35 87)(21 88 36)(22 37 81)(23 82 38)(24 39 83)(25 92 54)(26 55 93)(27 94 56)(28 49 95)(29 96 50)(30 51 89)(31 90 52)(32 53 91)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 52 21 16)(2 51 22 15)(3 50 23 14)(4 49 24 13)(5 56 17 12)(6 55 18 11)(7 54 19 10)(8 53 20 9)(25 34 66 74)(26 33 67 73)(27 40 68 80)(28 39 69 79)(29 38 70 78)(30 37 71 77)(31 36 72 76)(32 35 65 75)(41 63 92 86)(42 62 93 85)(43 61 94 84)(44 60 95 83)(45 59 96 82)(46 58 89 81)(47 57 90 88)(48 64 91 87)
(2 6)(4 8)(9 49)(10 54)(11 51)(12 56)(13 53)(14 50)(15 55)(16 52)(18 22)(20 24)(25 41)(26 46)(27 43)(28 48)(29 45)(30 42)(31 47)(32 44)(33 81)(34 86)(35 83)(36 88)(37 85)(38 82)(39 87)(40 84)(57 76)(58 73)(59 78)(60 75)(61 80)(62 77)(63 74)(64 79)(65 95)(66 92)(67 89)(68 94)(69 91)(70 96)(71 93)(72 90)

G:=sub<Sym(96)| (1,57,76)(2,77,58)(3,59,78)(4,79,60)(5,61,80)(6,73,62)(7,63,74)(8,75,64)(9,48,65)(10,66,41)(11,42,67)(12,68,43)(13,44,69)(14,70,45)(15,46,71)(16,72,47)(17,84,40)(18,33,85)(19,86,34)(20,35,87)(21,88,36)(22,37,81)(23,82,38)(24,39,83)(25,92,54)(26,55,93)(27,94,56)(28,49,95)(29,96,50)(30,51,89)(31,90,52)(32,53,91), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,52,21,16)(2,51,22,15)(3,50,23,14)(4,49,24,13)(5,56,17,12)(6,55,18,11)(7,54,19,10)(8,53,20,9)(25,34,66,74)(26,33,67,73)(27,40,68,80)(28,39,69,79)(29,38,70,78)(30,37,71,77)(31,36,72,76)(32,35,65,75)(41,63,92,86)(42,62,93,85)(43,61,94,84)(44,60,95,83)(45,59,96,82)(46,58,89,81)(47,57,90,88)(48,64,91,87), (2,6)(4,8)(9,49)(10,54)(11,51)(12,56)(13,53)(14,50)(15,55)(16,52)(18,22)(20,24)(25,41)(26,46)(27,43)(28,48)(29,45)(30,42)(31,47)(32,44)(33,81)(34,86)(35,83)(36,88)(37,85)(38,82)(39,87)(40,84)(57,76)(58,73)(59,78)(60,75)(61,80)(62,77)(63,74)(64,79)(65,95)(66,92)(67,89)(68,94)(69,91)(70,96)(71,93)(72,90)>;

G:=Group( (1,57,76)(2,77,58)(3,59,78)(4,79,60)(5,61,80)(6,73,62)(7,63,74)(8,75,64)(9,48,65)(10,66,41)(11,42,67)(12,68,43)(13,44,69)(14,70,45)(15,46,71)(16,72,47)(17,84,40)(18,33,85)(19,86,34)(20,35,87)(21,88,36)(22,37,81)(23,82,38)(24,39,83)(25,92,54)(26,55,93)(27,94,56)(28,49,95)(29,96,50)(30,51,89)(31,90,52)(32,53,91), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,52,21,16)(2,51,22,15)(3,50,23,14)(4,49,24,13)(5,56,17,12)(6,55,18,11)(7,54,19,10)(8,53,20,9)(25,34,66,74)(26,33,67,73)(27,40,68,80)(28,39,69,79)(29,38,70,78)(30,37,71,77)(31,36,72,76)(32,35,65,75)(41,63,92,86)(42,62,93,85)(43,61,94,84)(44,60,95,83)(45,59,96,82)(46,58,89,81)(47,57,90,88)(48,64,91,87), (2,6)(4,8)(9,49)(10,54)(11,51)(12,56)(13,53)(14,50)(15,55)(16,52)(18,22)(20,24)(25,41)(26,46)(27,43)(28,48)(29,45)(30,42)(31,47)(32,44)(33,81)(34,86)(35,83)(36,88)(37,85)(38,82)(39,87)(40,84)(57,76)(58,73)(59,78)(60,75)(61,80)(62,77)(63,74)(64,79)(65,95)(66,92)(67,89)(68,94)(69,91)(70,96)(71,93)(72,90) );

G=PermutationGroup([[(1,57,76),(2,77,58),(3,59,78),(4,79,60),(5,61,80),(6,73,62),(7,63,74),(8,75,64),(9,48,65),(10,66,41),(11,42,67),(12,68,43),(13,44,69),(14,70,45),(15,46,71),(16,72,47),(17,84,40),(18,33,85),(19,86,34),(20,35,87),(21,88,36),(22,37,81),(23,82,38),(24,39,83),(25,92,54),(26,55,93),(27,94,56),(28,49,95),(29,96,50),(30,51,89),(31,90,52),(32,53,91)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,52,21,16),(2,51,22,15),(3,50,23,14),(4,49,24,13),(5,56,17,12),(6,55,18,11),(7,54,19,10),(8,53,20,9),(25,34,66,74),(26,33,67,73),(27,40,68,80),(28,39,69,79),(29,38,70,78),(30,37,71,77),(31,36,72,76),(32,35,65,75),(41,63,92,86),(42,62,93,85),(43,61,94,84),(44,60,95,83),(45,59,96,82),(46,58,89,81),(47,57,90,88),(48,64,91,87)], [(2,6),(4,8),(9,49),(10,54),(11,51),(12,56),(13,53),(14,50),(15,55),(16,52),(18,22),(20,24),(25,41),(26,46),(27,43),(28,48),(29,45),(30,42),(31,47),(32,44),(33,81),(34,86),(35,83),(36,88),(37,85),(38,82),(39,87),(40,84),(57,76),(58,73),(59,78),(60,75),(61,80),(62,77),(63,74),(64,79),(65,95),(66,92),(67,89),(68,94),(69,91),(70,96),(71,93),(72,90)]])

Matrix representation of C3⋊C81D4 in GL6(𝔽73)

100000
010000
0007200
0017200
0000072
0000172
,
7200000
0720000
00002262
00001151
0062422262
0031111151
,
5330000
61200000
00011052
00110520
00037062
00370620
,
7200000
1110000
000100
001000
000001
000010

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,62,31,0,0,0,0,42,11,0,0,22,11,22,11,0,0,62,51,62,51],[53,61,0,0,0,0,3,20,0,0,0,0,0,0,0,11,0,37,0,0,11,0,37,0,0,0,0,52,0,62,0,0,52,0,62,0],[72,11,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C3⋊C81D4 in GAP, Magma, Sage, TeX

C_3\rtimes C_8\rtimes_1D_4
% in TeX

G:=Group("C3:C8:1D4");
// GroupNames label

G:=SmallGroup(192,339);
// by ID

G=gap.SmallGroup(192,339);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,1094,135,100,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^4=d^2=1,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=b^-1,d*b*d=b^5,d*c*d=c^-1>;
// generators/relations

Export

Character table of C3⋊C81D4 in TeX

׿
×
𝔽