Copied to
clipboard

G = (C2×C4).57D8order 128 = 27

1st non-split extension by C2×C4 of D8 acting via D8/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×C4).57D8, C2.10(C4×D8), D4⋊C41C4, (C2×C8).332D4, C4.123(C4×D4), C2.3(C87D4), C2.5(C88D4), C2.17(C4×SD16), (C2×C4).62SD16, C22.43(C2×D8), C2.2(C4.4D8), C23.785(C2×D4), C22.168(C4×D4), (C22×C4).554D4, C22.4Q1618C2, C4.8(C42⋊C2), C4.2(C422C2), C22.70(C4○D8), C22.67(C2×SD16), (C22×C8).484C22, (C22×D4).39C22, C22.131(C4⋊D4), C23.65C233C2, (C22×C4).1385C23, (C2×C42).1065C22, C22.59(C4.4D4), C4.93(C22.D4), C24.3C22.8C2, C2.3(C42.78C22), C2.19(C24.C22), (C2×C4×C8)⋊10C2, C4⋊C4.82(C2×C4), (C2×C8).160(C2×C4), (C2×D4).99(C2×C4), (C2×D4⋊C4).7C2, (C2×C4).1342(C2×D4), (C2×C4⋊C4).71C22, (C2×C4).580(C4○D4), (C2×C4).403(C22×C4), SmallGroup(128,666)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — (C2×C4).57D8
C1C2C22C2×C4C22×C4C22×C8C2×C4×C8 — (C2×C4).57D8
C1C2C2×C4 — (C2×C4).57D8
C1C23C2×C42 — (C2×C4).57D8
C1C2C2C22×C4 — (C2×C4).57D8

Generators and relations for (C2×C4).57D8
 G = < a,b,c,d | a2=b4=c8=d2=1, dbd=ab=ba, ac=ca, ad=da, bc=cb, dcd=b2c-1 >

Subgroups: 340 in 146 conjugacy classes, 60 normal (44 characteristic)
C1, C2 [×7], C2 [×2], C4 [×4], C4 [×8], C22 [×7], C22 [×10], C8 [×4], C2×C4 [×6], C2×C4 [×4], C2×C4 [×14], D4 [×6], C23, C23 [×8], C42 [×2], C22⋊C4 [×4], C4⋊C4 [×2], C4⋊C4 [×7], C2×C8 [×4], C2×C8 [×4], C22×C4 [×3], C22×C4 [×3], C2×D4 [×2], C2×D4 [×5], C24, C2.C42, C4×C8 [×2], D4⋊C4 [×4], D4⋊C4 [×2], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4 [×3], C2×C4⋊C4, C22×C8 [×2], C22×D4, C22.4Q16 [×2], C23.65C23, C24.3C22, C2×C4×C8, C2×D4⋊C4 [×2], (C2×C4).57D8
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], C23, D8 [×2], SD16 [×2], C22×C4, C2×D4 [×2], C4○D4 [×4], C42⋊C2, C4×D4 [×2], C4⋊D4, C22.D4, C4.4D4, C422C2, C2×D8, C2×SD16, C4○D8 [×2], C24.C22, C4×D8, C4×SD16, C88D4, C87D4, C4.4D8, C42.78C22, (C2×C4).57D8

Smallest permutation representation of (C2×C4).57D8
On 64 points
Generators in S64
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 49)(16 50)(17 36)(18 37)(19 38)(20 39)(21 40)(22 33)(23 34)(24 35)(25 47)(26 48)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)
(1 18 49 31)(2 19 50 32)(3 20 51 25)(4 21 52 26)(5 22 53 27)(6 23 54 28)(7 24 55 29)(8 17 56 30)(9 47 59 39)(10 48 60 40)(11 41 61 33)(12 42 62 34)(13 43 63 35)(14 44 64 36)(15 45 57 37)(16 46 58 38)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 49)(2 8)(3 55)(4 6)(5 53)(7 51)(9 63)(10 12)(11 61)(13 59)(14 16)(15 57)(17 38)(18 45)(19 36)(20 43)(21 34)(22 41)(23 40)(24 47)(25 35)(26 42)(27 33)(28 48)(29 39)(30 46)(31 37)(32 44)(50 56)(52 54)(58 64)(60 62)

G:=sub<Sym(64)| (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,36)(18,37)(19,38)(20,39)(21,40)(22,33)(23,34)(24,35)(25,47)(26,48)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46), (1,18,49,31)(2,19,50,32)(3,20,51,25)(4,21,52,26)(5,22,53,27)(6,23,54,28)(7,24,55,29)(8,17,56,30)(9,47,59,39)(10,48,60,40)(11,41,61,33)(12,42,62,34)(13,43,63,35)(14,44,64,36)(15,45,57,37)(16,46,58,38), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,49)(2,8)(3,55)(4,6)(5,53)(7,51)(9,63)(10,12)(11,61)(13,59)(14,16)(15,57)(17,38)(18,45)(19,36)(20,43)(21,34)(22,41)(23,40)(24,47)(25,35)(26,42)(27,33)(28,48)(29,39)(30,46)(31,37)(32,44)(50,56)(52,54)(58,64)(60,62)>;

G:=Group( (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,36)(18,37)(19,38)(20,39)(21,40)(22,33)(23,34)(24,35)(25,47)(26,48)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46), (1,18,49,31)(2,19,50,32)(3,20,51,25)(4,21,52,26)(5,22,53,27)(6,23,54,28)(7,24,55,29)(8,17,56,30)(9,47,59,39)(10,48,60,40)(11,41,61,33)(12,42,62,34)(13,43,63,35)(14,44,64,36)(15,45,57,37)(16,46,58,38), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,49)(2,8)(3,55)(4,6)(5,53)(7,51)(9,63)(10,12)(11,61)(13,59)(14,16)(15,57)(17,38)(18,45)(19,36)(20,43)(21,34)(22,41)(23,40)(24,47)(25,35)(26,42)(27,33)(28,48)(29,39)(30,46)(31,37)(32,44)(50,56)(52,54)(58,64)(60,62) );

G=PermutationGroup([(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,49),(16,50),(17,36),(18,37),(19,38),(20,39),(21,40),(22,33),(23,34),(24,35),(25,47),(26,48),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46)], [(1,18,49,31),(2,19,50,32),(3,20,51,25),(4,21,52,26),(5,22,53,27),(6,23,54,28),(7,24,55,29),(8,17,56,30),(9,47,59,39),(10,48,60,40),(11,41,61,33),(12,42,62,34),(13,43,63,35),(14,44,64,36),(15,45,57,37),(16,46,58,38)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,49),(2,8),(3,55),(4,6),(5,53),(7,51),(9,63),(10,12),(11,61),(13,59),(14,16),(15,57),(17,38),(18,45),(19,36),(20,43),(21,34),(22,41),(23,40),(24,47),(25,35),(26,42),(27,33),(28,48),(29,39),(30,46),(31,37),(32,44),(50,56),(52,54),(58,64),(60,62)])

44 conjugacy classes

class 1 2A···2G2H2I4A···4L4M···4R8A···8P
order12···2224···44···48···8
size11···1882···28···82···2

44 irreducible representations

dim1111111222222
type+++++++++
imageC1C2C2C2C2C2C4D4D4D8SD16C4○D4C4○D8
kernel(C2×C4).57D8C22.4Q16C23.65C23C24.3C22C2×C4×C8C2×D4⋊C4D4⋊C4C2×C8C22×C4C2×C4C2×C4C2×C4C22
# reps1211128224488

Matrix representation of (C2×C4).57D8 in GL5(𝔽17)

10000
01000
00100
000160
000016
,
40000
01000
00100
000016
00010
,
130000
014300
0141400
0001212
000512
,
10000
01000
001600
000160
00001

G:=sub<GL(5,GF(17))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,16,0],[13,0,0,0,0,0,14,14,0,0,0,3,14,0,0,0,0,0,12,5,0,0,0,12,12],[1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1] >;

(C2×C4).57D8 in GAP, Magma, Sage, TeX

(C_2\times C_4)._{57}D_8
% in TeX

G:=Group("(C2xC4).57D8");
// GroupNames label

G:=SmallGroup(128,666);
// by ID

G=gap.SmallGroup(128,666);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,736,422,58,2019,248,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=d^2=1,d*b*d=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*c*d=b^2*c^-1>;
// generators/relations

׿
×
𝔽