Copied to
clipboard

?

G = D20.44D4order 320 = 26·5

14th non-split extension by D20 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D20.44D4, C40.7C23, Q16.6D10, C20.26C24, SD16.1D10, Dic10.44D4, D20.19C23, M4(2).18D10, Dic20.1C22, Dic10.19C23, C54(Q8○D8), (D5×Q16)⋊2C2, C5⋊D4.7D4, D4⋊D5.C22, C4.118(D4×D5), C8⋊D5.C22, C8.C225D5, C40⋊C2.C22, C8.7(C22×D5), Q16⋊D54C2, C4○D4.15D10, D10.58(C2×D4), C8.D104C2, SD16⋊D54C2, C20.247(C2×D4), (C2×Q8).92D10, (C8×D5).2C22, C22.17(D4×D5), C4.26(C23×D5), Q8⋊D5.2C22, (C5×SD16).C22, SD163D54C2, D20.2C44C2, D4.8D106C2, (Q8×D5).3C22, C52C8.28C23, Dic5.64(C2×D4), D4.19(C22×D5), (C5×D4).19C23, (C4×D5).17C23, D4.D5.2C22, D4.10D108C2, (C5×Q8).19C23, (C5×Q16).1C22, Q8.19(C22×D5), C5⋊Q16.3C22, (C2×C20).117C23, Q8.10D106C2, C4○D20.32C22, D42D5.3C22, C10.127(C22×D4), Q82D5.3C22, (Q8×C10).153C22, (C5×M4(2)).1C22, (C2×Dic10).207C22, C2.100(C2×D4×D5), (C2×C5⋊Q16)⋊29C2, (C2×C10).72(C2×D4), (C5×C8.C22)⋊4C2, (C5×C4○D4).28C22, (C2×C4).101(C22×D5), (C2×C52C8).182C22, SmallGroup(320,1451)

Series: Derived Chief Lower central Upper central

C1C20 — D20.44D4
C1C5C10C20C4×D5C4○D20Q8.10D10 — D20.44D4
C5C10C20 — D20.44D4

Subgroups: 870 in 248 conjugacy classes, 99 normal (45 characteristic)
C1, C2, C2 [×5], C4 [×2], C4 [×8], C22, C22 [×4], C5, C8 [×2], C8 [×2], C2×C4, C2×C4 [×14], D4, D4 [×10], Q8, Q8 [×2], Q8 [×10], D5 [×3], C10, C10 [×2], C2×C8 [×3], M4(2), M4(2) [×2], D8, SD16 [×2], SD16 [×4], Q16 [×2], Q16 [×7], C2×Q8, C2×Q8 [×7], C4○D4, C4○D4 [×12], Dic5 [×2], Dic5 [×3], C20 [×2], C20 [×3], D10 [×2], D10, C2×C10, C2×C10, C8○D4, C2×Q16 [×3], C4○D8 [×3], C8.C22, C8.C22 [×5], 2- (1+4) [×2], C52C8 [×2], C40 [×2], Dic10 [×2], Dic10 [×2], Dic10 [×5], C4×D5 [×2], C4×D5 [×7], D20 [×2], D20 [×2], C2×Dic5 [×3], C5⋊D4 [×2], C5⋊D4 [×3], C2×C20, C2×C20 [×2], C5×D4, C5×D4, C5×Q8, C5×Q8 [×2], C5×Q8, Q8○D8, C8×D5 [×2], C8⋊D5 [×2], C40⋊C2 [×2], Dic20 [×2], C2×C52C8, D4⋊D5, D4.D5, Q8⋊D5, C5⋊Q16, C5⋊Q16 [×4], C5×M4(2), C5×SD16 [×2], C5×Q16 [×2], C2×Dic10, C2×Dic10, C4○D20 [×2], C4○D20 [×3], D42D5 [×2], D42D5 [×2], Q8×D5 [×4], Q8×D5, Q82D5 [×2], Q82D5, Q8×C10, C5×C4○D4, D20.2C4, C8.D10, SD16⋊D5 [×2], SD163D5 [×2], D5×Q16 [×2], Q16⋊D5 [×2], C2×C5⋊Q16, D4.8D10, C5×C8.C22, Q8.10D10, D4.10D10, D20.44D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, C22×D5 [×7], Q8○D8, D4×D5 [×2], C23×D5, C2×D4×D5, D20.44D4

Generators and relations
 G = < a,b,c,d | a20=b2=1, c4=d2=a10, bab=a-1, cac-1=dad-1=a11, cbc-1=dbd-1=a10b, dcd-1=a10c3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 132)(2 131)(3 130)(4 129)(5 128)(6 127)(7 126)(8 125)(9 124)(10 123)(11 122)(12 121)(13 140)(14 139)(15 138)(16 137)(17 136)(18 135)(19 134)(20 133)(21 160)(22 159)(23 158)(24 157)(25 156)(26 155)(27 154)(28 153)(29 152)(30 151)(31 150)(32 149)(33 148)(34 147)(35 146)(36 145)(37 144)(38 143)(39 142)(40 141)(41 76)(42 75)(43 74)(44 73)(45 72)(46 71)(47 70)(48 69)(49 68)(50 67)(51 66)(52 65)(53 64)(54 63)(55 62)(56 61)(57 80)(58 79)(59 78)(60 77)(81 105)(82 104)(83 103)(84 102)(85 101)(86 120)(87 119)(88 118)(89 117)(90 116)(91 115)(92 114)(93 113)(94 112)(95 111)(96 110)(97 109)(98 108)(99 107)(100 106)
(1 78 141 118 11 68 151 108)(2 69 142 109 12 79 152 119)(3 80 143 120 13 70 153 110)(4 71 144 111 14 61 154 101)(5 62 145 102 15 72 155 112)(6 73 146 113 16 63 156 103)(7 64 147 104 17 74 157 114)(8 75 148 115 18 65 158 105)(9 66 149 106 19 76 159 116)(10 77 150 117 20 67 160 107)(21 89 123 50 31 99 133 60)(22 100 124 41 32 90 134 51)(23 91 125 52 33 81 135 42)(24 82 126 43 34 92 136 53)(25 93 127 54 35 83 137 44)(26 84 128 45 36 94 138 55)(27 95 129 56 37 85 139 46)(28 86 130 47 38 96 140 57)(29 97 131 58 39 87 121 48)(30 88 132 49 40 98 122 59)
(1 36 11 26)(2 27 12 37)(3 38 13 28)(4 29 14 39)(5 40 15 30)(6 31 16 21)(7 22 17 32)(8 33 18 23)(9 24 19 34)(10 35 20 25)(41 64 51 74)(42 75 52 65)(43 66 53 76)(44 77 54 67)(45 68 55 78)(46 79 56 69)(47 70 57 80)(48 61 58 71)(49 72 59 62)(50 63 60 73)(81 115 91 105)(82 106 92 116)(83 117 93 107)(84 108 94 118)(85 119 95 109)(86 110 96 120)(87 101 97 111)(88 112 98 102)(89 103 99 113)(90 114 100 104)(121 154 131 144)(122 145 132 155)(123 156 133 146)(124 147 134 157)(125 158 135 148)(126 149 136 159)(127 160 137 150)(128 151 138 141)(129 142 139 152)(130 153 140 143)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,132)(2,131)(3,130)(4,129)(5,128)(6,127)(7,126)(8,125)(9,124)(10,123)(11,122)(12,121)(13,140)(14,139)(15,138)(16,137)(17,136)(18,135)(19,134)(20,133)(21,160)(22,159)(23,158)(24,157)(25,156)(26,155)(27,154)(28,153)(29,152)(30,151)(31,150)(32,149)(33,148)(34,147)(35,146)(36,145)(37,144)(38,143)(39,142)(40,141)(41,76)(42,75)(43,74)(44,73)(45,72)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,63)(55,62)(56,61)(57,80)(58,79)(59,78)(60,77)(81,105)(82,104)(83,103)(84,102)(85,101)(86,120)(87,119)(88,118)(89,117)(90,116)(91,115)(92,114)(93,113)(94,112)(95,111)(96,110)(97,109)(98,108)(99,107)(100,106), (1,78,141,118,11,68,151,108)(2,69,142,109,12,79,152,119)(3,80,143,120,13,70,153,110)(4,71,144,111,14,61,154,101)(5,62,145,102,15,72,155,112)(6,73,146,113,16,63,156,103)(7,64,147,104,17,74,157,114)(8,75,148,115,18,65,158,105)(9,66,149,106,19,76,159,116)(10,77,150,117,20,67,160,107)(21,89,123,50,31,99,133,60)(22,100,124,41,32,90,134,51)(23,91,125,52,33,81,135,42)(24,82,126,43,34,92,136,53)(25,93,127,54,35,83,137,44)(26,84,128,45,36,94,138,55)(27,95,129,56,37,85,139,46)(28,86,130,47,38,96,140,57)(29,97,131,58,39,87,121,48)(30,88,132,49,40,98,122,59), (1,36,11,26)(2,27,12,37)(3,38,13,28)(4,29,14,39)(5,40,15,30)(6,31,16,21)(7,22,17,32)(8,33,18,23)(9,24,19,34)(10,35,20,25)(41,64,51,74)(42,75,52,65)(43,66,53,76)(44,77,54,67)(45,68,55,78)(46,79,56,69)(47,70,57,80)(48,61,58,71)(49,72,59,62)(50,63,60,73)(81,115,91,105)(82,106,92,116)(83,117,93,107)(84,108,94,118)(85,119,95,109)(86,110,96,120)(87,101,97,111)(88,112,98,102)(89,103,99,113)(90,114,100,104)(121,154,131,144)(122,145,132,155)(123,156,133,146)(124,147,134,157)(125,158,135,148)(126,149,136,159)(127,160,137,150)(128,151,138,141)(129,142,139,152)(130,153,140,143)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,132)(2,131)(3,130)(4,129)(5,128)(6,127)(7,126)(8,125)(9,124)(10,123)(11,122)(12,121)(13,140)(14,139)(15,138)(16,137)(17,136)(18,135)(19,134)(20,133)(21,160)(22,159)(23,158)(24,157)(25,156)(26,155)(27,154)(28,153)(29,152)(30,151)(31,150)(32,149)(33,148)(34,147)(35,146)(36,145)(37,144)(38,143)(39,142)(40,141)(41,76)(42,75)(43,74)(44,73)(45,72)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,63)(55,62)(56,61)(57,80)(58,79)(59,78)(60,77)(81,105)(82,104)(83,103)(84,102)(85,101)(86,120)(87,119)(88,118)(89,117)(90,116)(91,115)(92,114)(93,113)(94,112)(95,111)(96,110)(97,109)(98,108)(99,107)(100,106), (1,78,141,118,11,68,151,108)(2,69,142,109,12,79,152,119)(3,80,143,120,13,70,153,110)(4,71,144,111,14,61,154,101)(5,62,145,102,15,72,155,112)(6,73,146,113,16,63,156,103)(7,64,147,104,17,74,157,114)(8,75,148,115,18,65,158,105)(9,66,149,106,19,76,159,116)(10,77,150,117,20,67,160,107)(21,89,123,50,31,99,133,60)(22,100,124,41,32,90,134,51)(23,91,125,52,33,81,135,42)(24,82,126,43,34,92,136,53)(25,93,127,54,35,83,137,44)(26,84,128,45,36,94,138,55)(27,95,129,56,37,85,139,46)(28,86,130,47,38,96,140,57)(29,97,131,58,39,87,121,48)(30,88,132,49,40,98,122,59), (1,36,11,26)(2,27,12,37)(3,38,13,28)(4,29,14,39)(5,40,15,30)(6,31,16,21)(7,22,17,32)(8,33,18,23)(9,24,19,34)(10,35,20,25)(41,64,51,74)(42,75,52,65)(43,66,53,76)(44,77,54,67)(45,68,55,78)(46,79,56,69)(47,70,57,80)(48,61,58,71)(49,72,59,62)(50,63,60,73)(81,115,91,105)(82,106,92,116)(83,117,93,107)(84,108,94,118)(85,119,95,109)(86,110,96,120)(87,101,97,111)(88,112,98,102)(89,103,99,113)(90,114,100,104)(121,154,131,144)(122,145,132,155)(123,156,133,146)(124,147,134,157)(125,158,135,148)(126,149,136,159)(127,160,137,150)(128,151,138,141)(129,142,139,152)(130,153,140,143) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,132),(2,131),(3,130),(4,129),(5,128),(6,127),(7,126),(8,125),(9,124),(10,123),(11,122),(12,121),(13,140),(14,139),(15,138),(16,137),(17,136),(18,135),(19,134),(20,133),(21,160),(22,159),(23,158),(24,157),(25,156),(26,155),(27,154),(28,153),(29,152),(30,151),(31,150),(32,149),(33,148),(34,147),(35,146),(36,145),(37,144),(38,143),(39,142),(40,141),(41,76),(42,75),(43,74),(44,73),(45,72),(46,71),(47,70),(48,69),(49,68),(50,67),(51,66),(52,65),(53,64),(54,63),(55,62),(56,61),(57,80),(58,79),(59,78),(60,77),(81,105),(82,104),(83,103),(84,102),(85,101),(86,120),(87,119),(88,118),(89,117),(90,116),(91,115),(92,114),(93,113),(94,112),(95,111),(96,110),(97,109),(98,108),(99,107),(100,106)], [(1,78,141,118,11,68,151,108),(2,69,142,109,12,79,152,119),(3,80,143,120,13,70,153,110),(4,71,144,111,14,61,154,101),(5,62,145,102,15,72,155,112),(6,73,146,113,16,63,156,103),(7,64,147,104,17,74,157,114),(8,75,148,115,18,65,158,105),(9,66,149,106,19,76,159,116),(10,77,150,117,20,67,160,107),(21,89,123,50,31,99,133,60),(22,100,124,41,32,90,134,51),(23,91,125,52,33,81,135,42),(24,82,126,43,34,92,136,53),(25,93,127,54,35,83,137,44),(26,84,128,45,36,94,138,55),(27,95,129,56,37,85,139,46),(28,86,130,47,38,96,140,57),(29,97,131,58,39,87,121,48),(30,88,132,49,40,98,122,59)], [(1,36,11,26),(2,27,12,37),(3,38,13,28),(4,29,14,39),(5,40,15,30),(6,31,16,21),(7,22,17,32),(8,33,18,23),(9,24,19,34),(10,35,20,25),(41,64,51,74),(42,75,52,65),(43,66,53,76),(44,77,54,67),(45,68,55,78),(46,79,56,69),(47,70,57,80),(48,61,58,71),(49,72,59,62),(50,63,60,73),(81,115,91,105),(82,106,92,116),(83,117,93,107),(84,108,94,118),(85,119,95,109),(86,110,96,120),(87,101,97,111),(88,112,98,102),(89,103,99,113),(90,114,100,104),(121,154,131,144),(122,145,132,155),(123,156,133,146),(124,147,134,157),(125,158,135,148),(126,149,136,159),(127,160,137,150),(128,151,138,141),(129,142,139,152),(130,153,140,143)])

Matrix representation G ⊆ GL8(𝔽41)

61000000
400000000
00610000
004000000
0000002912
0000001212
0000122900
0000292900
,
0403570000
400260000
003560000
00160000
0000013232
0000400329
00009901
0000932400
,
3540600000
10060000
3540610000
104000000
00009901
000032910
0000400329
0000013232
,
6135390000
400260000
6135400000
400100000
0000400329
0000013232
00003232040
0000932400

G:=sub<GL(8,GF(41))| [6,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,6,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,29,0,0,0,0,0,0,29,29,0,0,0,0,29,12,0,0,0,0,0,0,12,12,0,0],[0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,35,2,35,1,0,0,0,0,7,6,6,6,0,0,0,0,0,0,0,0,0,40,9,9,0,0,0,0,1,0,9,32,0,0,0,0,32,32,0,40,0,0,0,0,32,9,1,0],[35,1,35,1,0,0,0,0,40,0,40,0,0,0,0,0,6,0,6,40,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,9,32,40,0,0,0,0,0,9,9,0,1,0,0,0,0,0,1,32,32,0,0,0,0,1,0,9,32],[6,40,6,40,0,0,0,0,1,0,1,0,0,0,0,0,35,2,35,1,0,0,0,0,39,6,40,0,0,0,0,0,0,0,0,0,40,0,32,9,0,0,0,0,0,1,32,32,0,0,0,0,32,32,0,40,0,0,0,0,9,32,40,0] >;

44 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D8E10A10B10C10D10E10F20A20B20C20D20E···20J40A40B40C40D
order1222222444444444455888881010101010102020202020···2040404040
size1124101020224441010202020224410102022448844448···88888

44 irreducible representations

dim1111111111112222222224448
type+++++++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D10D10Q8○D8D4×D5D4×D5D20.44D4
kernelD20.44D4D20.2C4C8.D10SD16⋊D5SD163D5D5×Q16Q16⋊D5C2×C5⋊Q16D4.8D10C5×C8.C22Q8.10D10D4.10D10Dic10D20C5⋊D4C8.C22M4(2)SD16Q16C2×Q8C4○D4C5C4C22C1
# reps1112222111111122244222222

In GAP, Magma, Sage, TeX

D_{20}._{44}D_4
% in TeX

G:=Group("D20.44D4");
// GroupNames label

G:=SmallGroup(320,1451);
// by ID

G=gap.SmallGroup(320,1451);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,184,570,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=1,c^4=d^2=a^10,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^11,c*b*c^-1=d*b*d^-1=a^10*b,d*c*d^-1=a^10*c^3>;
// generators/relations

׿
×
𝔽