Copied to
clipboard

G = Dic5.Dic6order 480 = 25·3·5

3rd non-split extension by Dic5 of Dic6 acting via Dic6/Dic3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic5.3Dic6, C3⋊C81F5, C15⋊(C4.Q8), C153C81C4, C4⋊F5.3S3, C32(C40⋊C4), C6.8(C4⋊F5), C12.5(C2×F5), C4.15(S3×F5), C30.1(C4⋊C4), C5⋊(C12.Q8), C20.15(C4×S3), C60.15(C2×C4), (C6×D5).25D4, (C4×D5).60D6, C60⋊C4.3C2, (C3×Dic5).3Q8, (C3×D5).5SD16, D5.1(D4.S3), C2.4(Dic3⋊F5), D10.13(C3⋊D4), C10.1(Dic3⋊C4), D5.1(Q82S3), (D5×C12).46C22, (C5×C3⋊C8)⋊1C4, (D5×C3⋊C8).2C2, (C3×C4⋊F5).3C2, SmallGroup(480,235)

Series: Derived Chief Lower central Upper central

C1C60 — Dic5.Dic6
C1C5C15C30C6×D5D5×C12C3×C4⋊F5 — Dic5.Dic6
C15C30C60 — Dic5.Dic6
C1C2C4

Generators and relations for Dic5.Dic6
 G = < a,b,c,d | a10=c12=1, b2=a5, d2=bc6, bab-1=a-1, cac-1=a3, ad=da, cbc-1=a5b, bd=db, dcd-1=a5bc-1 >

Subgroups: 404 in 72 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, D5, C10, Dic3, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, Dic5, C20, F5, D10, C3⋊C8, C3⋊C8, C2×Dic3, C2×C12, C3×D5, C30, C4.Q8, C52C8, C40, C4×D5, C2×F5, C2×C3⋊C8, C4⋊Dic3, C3×C4⋊C4, C3×Dic5, C60, C3×F5, C3⋊F5, C6×D5, C8×D5, C4⋊F5, C4⋊F5, C12.Q8, C5×C3⋊C8, C153C8, D5×C12, C6×F5, C2×C3⋊F5, C40⋊C4, D5×C3⋊C8, C3×C4⋊F5, C60⋊C4, Dic5.Dic6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, D6, C4⋊C4, SD16, F5, Dic6, C4×S3, C3⋊D4, C4.Q8, C2×F5, Dic3⋊C4, D4.S3, Q82S3, C4⋊F5, C12.Q8, S3×F5, C40⋊C4, Dic3⋊F5, Dic5.Dic6

Smallest permutation representation of Dic5.Dic6
On 120 points
Generators in S120
(1 83 89 95 77 7 113 41 47 119)(2 96 114 120 90 8 48 84 78 42)(3 109 37 43 115 9 79 85 91 73)(4 44 80 74 38 10 92 110 116 86)(5 75 93 87 81 11 117 45 39 111)(6 88 118 112 94 12 40 76 82 46)(13 19 106 72 25 53 59 31 66 100)(14 61 60 101 107 54 67 20 26 32)(15 102 68 33 49 55 27 62 108 21)(16 34 28 22 69 56 97 103 50 63)(17 23 98 64 29 57 51 35 70 104)(18 65 52 105 99 58 71 24 30 36)
(1 72 7 66)(2 67 8 61)(3 62 9 68)(4 69 10 63)(5 64 11 70)(6 71 12 65)(13 47 53 95)(14 96 54 48)(15 37 55 85)(16 86 56 38)(17 39 57 87)(18 88 58 40)(19 41 59 89)(20 90 60 42)(21 43 49 91)(22 92 50 44)(23 45 51 93)(24 94 52 46)(25 77 100 119)(26 120 101 78)(27 79 102 109)(28 110 103 80)(29 81 104 111)(30 112 105 82)(31 83 106 113)(32 114 107 84)(33 73 108 115)(34 116 97 74)(35 75 98 117)(36 118 99 76)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 63 66 10 7 69 72 4)(2 3 61 68 8 9 67 62)(5 71 70 6 11 65 64 12)(13 110 41 97 53 80 89 34)(14 102 90 115 54 27 42 73)(15 120 43 107 55 78 91 32)(16 100 92 113 56 25 44 83)(17 118 45 105 57 76 93 30)(18 98 94 111 58 35 46 81)(19 116 47 103 59 74 95 28)(20 108 96 109 60 33 48 79)(21 114 37 101 49 84 85 26)(22 106 86 119 50 31 38 77)(23 112 39 99 51 82 87 36)(24 104 88 117 52 29 40 75)

G:=sub<Sym(120)| (1,83,89,95,77,7,113,41,47,119)(2,96,114,120,90,8,48,84,78,42)(3,109,37,43,115,9,79,85,91,73)(4,44,80,74,38,10,92,110,116,86)(5,75,93,87,81,11,117,45,39,111)(6,88,118,112,94,12,40,76,82,46)(13,19,106,72,25,53,59,31,66,100)(14,61,60,101,107,54,67,20,26,32)(15,102,68,33,49,55,27,62,108,21)(16,34,28,22,69,56,97,103,50,63)(17,23,98,64,29,57,51,35,70,104)(18,65,52,105,99,58,71,24,30,36), (1,72,7,66)(2,67,8,61)(3,62,9,68)(4,69,10,63)(5,64,11,70)(6,71,12,65)(13,47,53,95)(14,96,54,48)(15,37,55,85)(16,86,56,38)(17,39,57,87)(18,88,58,40)(19,41,59,89)(20,90,60,42)(21,43,49,91)(22,92,50,44)(23,45,51,93)(24,94,52,46)(25,77,100,119)(26,120,101,78)(27,79,102,109)(28,110,103,80)(29,81,104,111)(30,112,105,82)(31,83,106,113)(32,114,107,84)(33,73,108,115)(34,116,97,74)(35,75,98,117)(36,118,99,76), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,63,66,10,7,69,72,4)(2,3,61,68,8,9,67,62)(5,71,70,6,11,65,64,12)(13,110,41,97,53,80,89,34)(14,102,90,115,54,27,42,73)(15,120,43,107,55,78,91,32)(16,100,92,113,56,25,44,83)(17,118,45,105,57,76,93,30)(18,98,94,111,58,35,46,81)(19,116,47,103,59,74,95,28)(20,108,96,109,60,33,48,79)(21,114,37,101,49,84,85,26)(22,106,86,119,50,31,38,77)(23,112,39,99,51,82,87,36)(24,104,88,117,52,29,40,75)>;

G:=Group( (1,83,89,95,77,7,113,41,47,119)(2,96,114,120,90,8,48,84,78,42)(3,109,37,43,115,9,79,85,91,73)(4,44,80,74,38,10,92,110,116,86)(5,75,93,87,81,11,117,45,39,111)(6,88,118,112,94,12,40,76,82,46)(13,19,106,72,25,53,59,31,66,100)(14,61,60,101,107,54,67,20,26,32)(15,102,68,33,49,55,27,62,108,21)(16,34,28,22,69,56,97,103,50,63)(17,23,98,64,29,57,51,35,70,104)(18,65,52,105,99,58,71,24,30,36), (1,72,7,66)(2,67,8,61)(3,62,9,68)(4,69,10,63)(5,64,11,70)(6,71,12,65)(13,47,53,95)(14,96,54,48)(15,37,55,85)(16,86,56,38)(17,39,57,87)(18,88,58,40)(19,41,59,89)(20,90,60,42)(21,43,49,91)(22,92,50,44)(23,45,51,93)(24,94,52,46)(25,77,100,119)(26,120,101,78)(27,79,102,109)(28,110,103,80)(29,81,104,111)(30,112,105,82)(31,83,106,113)(32,114,107,84)(33,73,108,115)(34,116,97,74)(35,75,98,117)(36,118,99,76), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,63,66,10,7,69,72,4)(2,3,61,68,8,9,67,62)(5,71,70,6,11,65,64,12)(13,110,41,97,53,80,89,34)(14,102,90,115,54,27,42,73)(15,120,43,107,55,78,91,32)(16,100,92,113,56,25,44,83)(17,118,45,105,57,76,93,30)(18,98,94,111,58,35,46,81)(19,116,47,103,59,74,95,28)(20,108,96,109,60,33,48,79)(21,114,37,101,49,84,85,26)(22,106,86,119,50,31,38,77)(23,112,39,99,51,82,87,36)(24,104,88,117,52,29,40,75) );

G=PermutationGroup([[(1,83,89,95,77,7,113,41,47,119),(2,96,114,120,90,8,48,84,78,42),(3,109,37,43,115,9,79,85,91,73),(4,44,80,74,38,10,92,110,116,86),(5,75,93,87,81,11,117,45,39,111),(6,88,118,112,94,12,40,76,82,46),(13,19,106,72,25,53,59,31,66,100),(14,61,60,101,107,54,67,20,26,32),(15,102,68,33,49,55,27,62,108,21),(16,34,28,22,69,56,97,103,50,63),(17,23,98,64,29,57,51,35,70,104),(18,65,52,105,99,58,71,24,30,36)], [(1,72,7,66),(2,67,8,61),(3,62,9,68),(4,69,10,63),(5,64,11,70),(6,71,12,65),(13,47,53,95),(14,96,54,48),(15,37,55,85),(16,86,56,38),(17,39,57,87),(18,88,58,40),(19,41,59,89),(20,90,60,42),(21,43,49,91),(22,92,50,44),(23,45,51,93),(24,94,52,46),(25,77,100,119),(26,120,101,78),(27,79,102,109),(28,110,103,80),(29,81,104,111),(30,112,105,82),(31,83,106,113),(32,114,107,84),(33,73,108,115),(34,116,97,74),(35,75,98,117),(36,118,99,76)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,63,66,10,7,69,72,4),(2,3,61,68,8,9,67,62),(5,71,70,6,11,65,64,12),(13,110,41,97,53,80,89,34),(14,102,90,115,54,27,42,73),(15,120,43,107,55,78,91,32),(16,100,92,113,56,25,44,83),(17,118,45,105,57,76,93,30),(18,98,94,111,58,35,46,81),(19,116,47,103,59,74,95,28),(20,108,96,109,60,33,48,79),(21,114,37,101,49,84,85,26),(22,106,86,119,50,31,38,77),(23,112,39,99,51,82,87,36),(24,104,88,117,52,29,40,75)]])

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F 5 6A6B6C8A8B8C8D 10 12A12B···12F 15 20A20B 30 40A40B40C40D60A60B
order1222344444456668888101212···1215202030404040406060
size11552210202060604210106630304420···2084481212121288

36 irreducible representations

dim11111122222222444444888
type+++++-++-++-++-
imageC1C2C2C2C4C4S3Q8D4D6SD16Dic6C4×S3C3⋊D4F5C2×F5D4.S3Q82S3C4⋊F5C40⋊C4S3×F5Dic3⋊F5Dic5.Dic6
kernelDic5.Dic6D5×C3⋊C8C3×C4⋊F5C60⋊C4C5×C3⋊C8C153C8C4⋊F5C3×Dic5C6×D5C4×D5C3×D5Dic5C20D10C3⋊C8C12D5D5C6C3C4C2C1
# reps11112211114222111124112

Matrix representation of Dic5.Dic6 in GL8(𝔽241)

2400000000
0240000000
0024000000
0002400000
00000100
00000010
00000001
0000240240240240
,
156052360000
0154300000
02088700000
1922082850000
0000000240
0000002400
0000024000
0000240000
,
78291431940000
1721731632120000
691811221870000
14344631090000
00000341734
00002240207207
00002072070224
00003417340
,
19157194510000
2335749780000
649126670000
7290115390000
00002240207207
00003417340
00000341734
00002072070224

G:=sub<GL(8,GF(241))| [240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,1,0,0,240,0,0,0,0,0,1,0,240,0,0,0,0,0,0,1,240],[156,0,0,192,0,0,0,0,0,154,208,208,0,0,0,0,5,3,87,2,0,0,0,0,236,0,0,85,0,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0],[78,172,69,143,0,0,0,0,29,173,181,44,0,0,0,0,143,163,122,63,0,0,0,0,194,212,187,109,0,0,0,0,0,0,0,0,0,224,207,34,0,0,0,0,34,0,207,17,0,0,0,0,17,207,0,34,0,0,0,0,34,207,224,0],[19,233,6,72,0,0,0,0,157,57,49,90,0,0,0,0,194,49,126,115,0,0,0,0,51,78,67,39,0,0,0,0,0,0,0,0,224,34,0,207,0,0,0,0,0,17,34,207,0,0,0,0,207,34,17,0,0,0,0,0,207,0,34,224] >;

Dic5.Dic6 in GAP, Magma, Sage, TeX

{\rm Dic}_5.{\rm Dic}_6
% in TeX

G:=Group("Dic5.Dic6");
// GroupNames label

G:=SmallGroup(480,235);
// by ID

G=gap.SmallGroup(480,235);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,64,675,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^10=c^12=1,b^2=a^5,d^2=b*c^6,b*a*b^-1=a^-1,c*a*c^-1=a^3,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d^-1=a^5*b*c^-1>;
// generators/relations

׿
×
𝔽