Copied to
clipboard

G = C62.237C23order 288 = 25·32

82nd non-split extension by C62 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.237C23, C125(C4×S3), C3221(C4×D4), C3⋊Dic318D4, C6.114(S3×D4), C12⋊S311C4, (C2×C12).212D6, C33(Dic35D4), C6.11D1223C2, (C6×C12).255C22, C6.49(Q83S3), C2.2(C12.26D6), C41(C4×C3⋊S3), (C3×C4⋊C4)⋊4S3, C6.71(S3×C2×C4), C4⋊C48(C3⋊S3), C2.4(D4×C3⋊S3), (C3×C12)⋊13(C2×C4), (C4×C3⋊Dic3)⋊7C2, (C32×C4⋊C4)⋊13C2, (C3×C6).236(C2×D4), (C2×C12⋊S3).14C2, (C3×C6).160(C4○D4), (C2×C6).254(C22×S3), (C3×C6).102(C22×C4), C22.18(C22×C3⋊S3), (C22×C3⋊S3).85C22, (C2×C3⋊Dic3).185C22, (C2×C4×C3⋊S3)⋊21C2, C2.13(C2×C4×C3⋊S3), (C2×C3⋊S3)⋊11(C2×C4), (C2×C4).43(C2×C3⋊S3), SmallGroup(288,750)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C62.237C23
C1C3C32C3×C6C62C22×C3⋊S3C2×C12⋊S3 — C62.237C23
C32C3×C6 — C62.237C23
C1C22C4⋊C4

Generators and relations for C62.237C23
 G = < a,b,c,d,e | a6=b6=c2=1, d2=b3, e2=a3, ab=ba, cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=b3c, ce=ec, ede-1=b3d >

Subgroups: 1124 in 282 conjugacy classes, 87 normal (19 characteristic)
C1, C2 [×3], C2 [×4], C3 [×4], C4 [×2], C4 [×5], C22, C22 [×8], S3 [×16], C6 [×12], C2×C4, C2×C4 [×2], C2×C4 [×6], D4 [×4], C23 [×2], C32, Dic3 [×12], C12 [×8], C12 [×8], D6 [×32], C2×C6 [×4], C42, C22⋊C4 [×2], C4⋊C4, C22×C4 [×2], C2×D4, C3⋊S3 [×4], C3×C6 [×3], C4×S3 [×16], D12 [×16], C2×Dic3 [×8], C2×C12 [×12], C22×S3 [×8], C4×D4, C3⋊Dic3 [×2], C3⋊Dic3, C3×C12 [×2], C3×C12 [×2], C2×C3⋊S3 [×4], C2×C3⋊S3 [×4], C62, C4×Dic3 [×4], D6⋊C4 [×8], C3×C4⋊C4 [×4], S3×C2×C4 [×8], C2×D12 [×4], C4×C3⋊S3 [×4], C12⋊S3 [×4], C2×C3⋊Dic3 [×2], C6×C12, C6×C12 [×2], C22×C3⋊S3 [×2], Dic35D4 [×4], C4×C3⋊Dic3, C6.11D12 [×2], C32×C4⋊C4, C2×C4×C3⋊S3 [×2], C2×C12⋊S3, C62.237C23
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], S3 [×4], C2×C4 [×6], D4 [×2], C23, D6 [×12], C22×C4, C2×D4, C4○D4, C3⋊S3, C4×S3 [×8], C22×S3 [×4], C4×D4, C2×C3⋊S3 [×3], S3×C2×C4 [×4], S3×D4 [×4], Q83S3 [×4], C4×C3⋊S3 [×2], C22×C3⋊S3, Dic35D4 [×4], C2×C4×C3⋊S3, D4×C3⋊S3, C12.26D6, C62.237C23

Smallest permutation representation of C62.237C23
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 35 38 57 13 52)(2 36 39 58 14 53)(3 31 40 59 15 54)(4 32 41 60 16 49)(5 33 42 55 17 50)(6 34 37 56 18 51)(7 134 20 142 120 27)(8 135 21 143 115 28)(9 136 22 144 116 29)(10 137 23 139 117 30)(11 138 24 140 118 25)(12 133 19 141 119 26)(43 78 91 63 86 71)(44 73 92 64 87 72)(45 74 93 65 88 67)(46 75 94 66 89 68)(47 76 95 61 90 69)(48 77 96 62 85 70)(79 114 127 99 122 107)(80 109 128 100 123 108)(81 110 129 101 124 103)(82 111 130 102 125 104)(83 112 131 97 126 105)(84 113 132 98 121 106)
(1 103)(2 108)(3 107)(4 106)(5 105)(6 104)(7 70)(8 69)(9 68)(10 67)(11 72)(12 71)(13 110)(14 109)(15 114)(16 113)(17 112)(18 111)(19 63)(20 62)(21 61)(22 66)(23 65)(24 64)(25 44)(26 43)(27 48)(28 47)(29 46)(30 45)(31 122)(32 121)(33 126)(34 125)(35 124)(36 123)(37 102)(38 101)(39 100)(40 99)(41 98)(42 97)(49 84)(50 83)(51 82)(52 81)(53 80)(54 79)(55 131)(56 130)(57 129)(58 128)(59 127)(60 132)(73 118)(74 117)(75 116)(76 115)(77 120)(78 119)(85 134)(86 133)(87 138)(88 137)(89 136)(90 135)(91 141)(92 140)(93 139)(94 144)(95 143)(96 142)
(1 129 57 103)(2 130 58 104)(3 131 59 105)(4 132 60 106)(5 127 55 107)(6 128 56 108)(7 96 142 70)(8 91 143 71)(9 92 144 72)(10 93 139 67)(11 94 140 68)(12 95 141 69)(13 81 35 101)(14 82 36 102)(15 83 31 97)(16 84 32 98)(17 79 33 99)(18 80 34 100)(19 90 26 76)(20 85 27 77)(21 86 28 78)(22 87 29 73)(23 88 30 74)(24 89 25 75)(37 123 51 109)(38 124 52 110)(39 125 53 111)(40 126 54 112)(41 121 49 113)(42 122 50 114)(43 135 63 115)(44 136 64 116)(45 137 65 117)(46 138 66 118)(47 133 61 119)(48 134 62 120)
(1 70 4 67)(2 71 5 68)(3 72 6 69)(7 106 10 103)(8 107 11 104)(9 108 12 105)(13 62 16 65)(14 63 17 66)(15 64 18 61)(19 112 22 109)(20 113 23 110)(21 114 24 111)(25 125 28 122)(26 126 29 123)(27 121 30 124)(31 44 34 47)(32 45 35 48)(33 46 36 43)(37 76 40 73)(38 77 41 74)(39 78 42 75)(49 88 52 85)(50 89 53 86)(51 90 54 87)(55 94 58 91)(56 95 59 92)(57 96 60 93)(79 138 82 135)(80 133 83 136)(81 134 84 137)(97 116 100 119)(98 117 101 120)(99 118 102 115)(127 140 130 143)(128 141 131 144)(129 142 132 139)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,35,38,57,13,52)(2,36,39,58,14,53)(3,31,40,59,15,54)(4,32,41,60,16,49)(5,33,42,55,17,50)(6,34,37,56,18,51)(7,134,20,142,120,27)(8,135,21,143,115,28)(9,136,22,144,116,29)(10,137,23,139,117,30)(11,138,24,140,118,25)(12,133,19,141,119,26)(43,78,91,63,86,71)(44,73,92,64,87,72)(45,74,93,65,88,67)(46,75,94,66,89,68)(47,76,95,61,90,69)(48,77,96,62,85,70)(79,114,127,99,122,107)(80,109,128,100,123,108)(81,110,129,101,124,103)(82,111,130,102,125,104)(83,112,131,97,126,105)(84,113,132,98,121,106), (1,103)(2,108)(3,107)(4,106)(5,105)(6,104)(7,70)(8,69)(9,68)(10,67)(11,72)(12,71)(13,110)(14,109)(15,114)(16,113)(17,112)(18,111)(19,63)(20,62)(21,61)(22,66)(23,65)(24,64)(25,44)(26,43)(27,48)(28,47)(29,46)(30,45)(31,122)(32,121)(33,126)(34,125)(35,124)(36,123)(37,102)(38,101)(39,100)(40,99)(41,98)(42,97)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,131)(56,130)(57,129)(58,128)(59,127)(60,132)(73,118)(74,117)(75,116)(76,115)(77,120)(78,119)(85,134)(86,133)(87,138)(88,137)(89,136)(90,135)(91,141)(92,140)(93,139)(94,144)(95,143)(96,142), (1,129,57,103)(2,130,58,104)(3,131,59,105)(4,132,60,106)(5,127,55,107)(6,128,56,108)(7,96,142,70)(8,91,143,71)(9,92,144,72)(10,93,139,67)(11,94,140,68)(12,95,141,69)(13,81,35,101)(14,82,36,102)(15,83,31,97)(16,84,32,98)(17,79,33,99)(18,80,34,100)(19,90,26,76)(20,85,27,77)(21,86,28,78)(22,87,29,73)(23,88,30,74)(24,89,25,75)(37,123,51,109)(38,124,52,110)(39,125,53,111)(40,126,54,112)(41,121,49,113)(42,122,50,114)(43,135,63,115)(44,136,64,116)(45,137,65,117)(46,138,66,118)(47,133,61,119)(48,134,62,120), (1,70,4,67)(2,71,5,68)(3,72,6,69)(7,106,10,103)(8,107,11,104)(9,108,12,105)(13,62,16,65)(14,63,17,66)(15,64,18,61)(19,112,22,109)(20,113,23,110)(21,114,24,111)(25,125,28,122)(26,126,29,123)(27,121,30,124)(31,44,34,47)(32,45,35,48)(33,46,36,43)(37,76,40,73)(38,77,41,74)(39,78,42,75)(49,88,52,85)(50,89,53,86)(51,90,54,87)(55,94,58,91)(56,95,59,92)(57,96,60,93)(79,138,82,135)(80,133,83,136)(81,134,84,137)(97,116,100,119)(98,117,101,120)(99,118,102,115)(127,140,130,143)(128,141,131,144)(129,142,132,139)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,35,38,57,13,52)(2,36,39,58,14,53)(3,31,40,59,15,54)(4,32,41,60,16,49)(5,33,42,55,17,50)(6,34,37,56,18,51)(7,134,20,142,120,27)(8,135,21,143,115,28)(9,136,22,144,116,29)(10,137,23,139,117,30)(11,138,24,140,118,25)(12,133,19,141,119,26)(43,78,91,63,86,71)(44,73,92,64,87,72)(45,74,93,65,88,67)(46,75,94,66,89,68)(47,76,95,61,90,69)(48,77,96,62,85,70)(79,114,127,99,122,107)(80,109,128,100,123,108)(81,110,129,101,124,103)(82,111,130,102,125,104)(83,112,131,97,126,105)(84,113,132,98,121,106), (1,103)(2,108)(3,107)(4,106)(5,105)(6,104)(7,70)(8,69)(9,68)(10,67)(11,72)(12,71)(13,110)(14,109)(15,114)(16,113)(17,112)(18,111)(19,63)(20,62)(21,61)(22,66)(23,65)(24,64)(25,44)(26,43)(27,48)(28,47)(29,46)(30,45)(31,122)(32,121)(33,126)(34,125)(35,124)(36,123)(37,102)(38,101)(39,100)(40,99)(41,98)(42,97)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,131)(56,130)(57,129)(58,128)(59,127)(60,132)(73,118)(74,117)(75,116)(76,115)(77,120)(78,119)(85,134)(86,133)(87,138)(88,137)(89,136)(90,135)(91,141)(92,140)(93,139)(94,144)(95,143)(96,142), (1,129,57,103)(2,130,58,104)(3,131,59,105)(4,132,60,106)(5,127,55,107)(6,128,56,108)(7,96,142,70)(8,91,143,71)(9,92,144,72)(10,93,139,67)(11,94,140,68)(12,95,141,69)(13,81,35,101)(14,82,36,102)(15,83,31,97)(16,84,32,98)(17,79,33,99)(18,80,34,100)(19,90,26,76)(20,85,27,77)(21,86,28,78)(22,87,29,73)(23,88,30,74)(24,89,25,75)(37,123,51,109)(38,124,52,110)(39,125,53,111)(40,126,54,112)(41,121,49,113)(42,122,50,114)(43,135,63,115)(44,136,64,116)(45,137,65,117)(46,138,66,118)(47,133,61,119)(48,134,62,120), (1,70,4,67)(2,71,5,68)(3,72,6,69)(7,106,10,103)(8,107,11,104)(9,108,12,105)(13,62,16,65)(14,63,17,66)(15,64,18,61)(19,112,22,109)(20,113,23,110)(21,114,24,111)(25,125,28,122)(26,126,29,123)(27,121,30,124)(31,44,34,47)(32,45,35,48)(33,46,36,43)(37,76,40,73)(38,77,41,74)(39,78,42,75)(49,88,52,85)(50,89,53,86)(51,90,54,87)(55,94,58,91)(56,95,59,92)(57,96,60,93)(79,138,82,135)(80,133,83,136)(81,134,84,137)(97,116,100,119)(98,117,101,120)(99,118,102,115)(127,140,130,143)(128,141,131,144)(129,142,132,139) );

G=PermutationGroup([(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,35,38,57,13,52),(2,36,39,58,14,53),(3,31,40,59,15,54),(4,32,41,60,16,49),(5,33,42,55,17,50),(6,34,37,56,18,51),(7,134,20,142,120,27),(8,135,21,143,115,28),(9,136,22,144,116,29),(10,137,23,139,117,30),(11,138,24,140,118,25),(12,133,19,141,119,26),(43,78,91,63,86,71),(44,73,92,64,87,72),(45,74,93,65,88,67),(46,75,94,66,89,68),(47,76,95,61,90,69),(48,77,96,62,85,70),(79,114,127,99,122,107),(80,109,128,100,123,108),(81,110,129,101,124,103),(82,111,130,102,125,104),(83,112,131,97,126,105),(84,113,132,98,121,106)], [(1,103),(2,108),(3,107),(4,106),(5,105),(6,104),(7,70),(8,69),(9,68),(10,67),(11,72),(12,71),(13,110),(14,109),(15,114),(16,113),(17,112),(18,111),(19,63),(20,62),(21,61),(22,66),(23,65),(24,64),(25,44),(26,43),(27,48),(28,47),(29,46),(30,45),(31,122),(32,121),(33,126),(34,125),(35,124),(36,123),(37,102),(38,101),(39,100),(40,99),(41,98),(42,97),(49,84),(50,83),(51,82),(52,81),(53,80),(54,79),(55,131),(56,130),(57,129),(58,128),(59,127),(60,132),(73,118),(74,117),(75,116),(76,115),(77,120),(78,119),(85,134),(86,133),(87,138),(88,137),(89,136),(90,135),(91,141),(92,140),(93,139),(94,144),(95,143),(96,142)], [(1,129,57,103),(2,130,58,104),(3,131,59,105),(4,132,60,106),(5,127,55,107),(6,128,56,108),(7,96,142,70),(8,91,143,71),(9,92,144,72),(10,93,139,67),(11,94,140,68),(12,95,141,69),(13,81,35,101),(14,82,36,102),(15,83,31,97),(16,84,32,98),(17,79,33,99),(18,80,34,100),(19,90,26,76),(20,85,27,77),(21,86,28,78),(22,87,29,73),(23,88,30,74),(24,89,25,75),(37,123,51,109),(38,124,52,110),(39,125,53,111),(40,126,54,112),(41,121,49,113),(42,122,50,114),(43,135,63,115),(44,136,64,116),(45,137,65,117),(46,138,66,118),(47,133,61,119),(48,134,62,120)], [(1,70,4,67),(2,71,5,68),(3,72,6,69),(7,106,10,103),(8,107,11,104),(9,108,12,105),(13,62,16,65),(14,63,17,66),(15,64,18,61),(19,112,22,109),(20,113,23,110),(21,114,24,111),(25,125,28,122),(26,126,29,123),(27,121,30,124),(31,44,34,47),(32,45,35,48),(33,46,36,43),(37,76,40,73),(38,77,41,74),(39,78,42,75),(49,88,52,85),(50,89,53,86),(51,90,54,87),(55,94,58,91),(56,95,59,92),(57,96,60,93),(79,138,82,135),(80,133,83,136),(81,134,84,137),(97,116,100,119),(98,117,101,120),(99,118,102,115),(127,140,130,143),(128,141,131,144),(129,142,132,139)])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A···4F4G4H4I4J4K4L6A···6L12A···12X
order1222222233334···44444446···612···12
size11111818181822222···2999918182···24···4

60 irreducible representations

dim11111112222244
type+++++++++++
imageC1C2C2C2C2C2C4S3D4D6C4○D4C4×S3S3×D4Q83S3
kernelC62.237C23C4×C3⋊Dic3C6.11D12C32×C4⋊C4C2×C4×C3⋊S3C2×C12⋊S3C12⋊S3C3×C4⋊C4C3⋊Dic3C2×C12C3×C6C12C6C6
# reps1121218421221644

Matrix representation of C62.237C23 in GL6(𝔽13)

110000
1200000
0001200
0011200
0000120
0000012
,
12120000
100000
001000
000100
0000120
0000012
,
1200000
110000
0001200
0012000
000008
000050
,
1200000
0120000
0012000
0001200
000008
000080
,
800000
080000
001000
000100
000001
0000120

G:=sub<GL(6,GF(13))| [1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,5,0,0,0,0,8,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,8,0,0,0,0,8,0],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;

C62.237C23 in GAP, Magma, Sage, TeX

C_6^2._{237}C_2^3
% in TeX

G:=Group("C6^2.237C2^3");
// GroupNames label

G:=SmallGroup(288,750);
// by ID

G=gap.SmallGroup(288,750);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,219,58,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=b^3,e^2=a^3,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^3*c,c*e=e*c,e*d*e^-1=b^3*d>;
// generators/relations

׿
×
𝔽