Copied to
clipboard

?

G = C4○D4×D15order 480 = 25·3·5

Direct product of C4○D4 and D15

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4○D4×D15, D47D30, Q87D30, D6027C22, C60.88C23, C30.64C24, D30.29C23, Dic3025C22, Dic15.31C23, (C2×C4)⋊7D30, (C5×D4)⋊23D6, (C2×C20)⋊13D6, (C5×Q8)⋊23D6, (D4×D15)⋊13C2, (C3×D4)⋊23D10, (C2×C12)⋊13D10, (C2×C60)⋊9C22, (Q8×D15)⋊13C2, (C3×Q8)⋊20D10, D42D1513C2, Q83D1513C2, C6.64(C23×D5), (C4×D15)⋊19C22, (D4×C15)⋊25C22, C157D411C22, C10.64(S3×C23), (C2×C30).10C23, D6011C217C2, (Q8×C15)⋊22C22, C4.43(C22×D15), C2.12(C23×D15), C20.138(C22×S3), C12.136(C22×D5), C22.2(C22×D15), (C2×Dic15)⋊27C22, (C22×D15).93C22, C37(D5×C4○D4), C57(S3×C4○D4), (C2×C4×D15)⋊6C2, (C3×C4○D4)⋊3D5, (C5×C4○D4)⋊7S3, C1529(C2×C4○D4), (C15×C4○D4)⋊3C2, (C2×C6).17(C22×D5), (C2×C10).18(C22×S3), SmallGroup(480,1175)

Series: Derived Chief Lower central Upper central

C1C30 — C4○D4×D15
C1C5C15C30D30C22×D15C2×C4×D15 — C4○D4×D15
C15C30 — C4○D4×D15

Subgroups: 1796 in 328 conjugacy classes, 121 normal (26 characteristic)
C1, C2, C2 [×8], C3, C4, C4 [×3], C4 [×4], C22 [×3], C22 [×10], C5, S3 [×5], C6, C6 [×3], C2×C4 [×3], C2×C4 [×13], D4 [×3], D4 [×9], Q8, Q8 [×3], C23 [×3], D5 [×5], C10, C10 [×3], Dic3 [×4], C12, C12 [×3], D6 [×10], C2×C6 [×3], C15, C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4, C4○D4 [×7], Dic5 [×4], C20, C20 [×3], D10 [×10], C2×C10 [×3], Dic6 [×3], C4×S3 [×10], D12 [×3], C2×Dic3 [×3], C3⋊D4 [×6], C2×C12 [×3], C3×D4 [×3], C3×Q8, C22×S3 [×3], D15 [×2], D15 [×3], C30, C30 [×3], C2×C4○D4, Dic10 [×3], C4×D5 [×10], D20 [×3], C2×Dic5 [×3], C5⋊D4 [×6], C2×C20 [×3], C5×D4 [×3], C5×Q8, C22×D5 [×3], S3×C2×C4 [×3], C4○D12 [×3], S3×D4 [×3], D42S3 [×3], S3×Q8, Q83S3, C3×C4○D4, Dic15, Dic15 [×3], C60, C60 [×3], D30, D30 [×3], D30 [×6], C2×C30 [×3], C2×C4×D5 [×3], C4○D20 [×3], D4×D5 [×3], D42D5 [×3], Q8×D5, Q82D5, C5×C4○D4, S3×C4○D4, Dic30 [×3], C4×D15, C4×D15 [×9], D60 [×3], C2×Dic15 [×3], C157D4 [×6], C2×C60 [×3], D4×C15 [×3], Q8×C15, C22×D15 [×3], D5×C4○D4, C2×C4×D15 [×3], D6011C2 [×3], D4×D15 [×3], D42D15 [×3], Q8×D15, Q83D15, C15×C4○D4, C4○D4×D15

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C4○D4 [×2], C24, D10 [×7], C22×S3 [×7], D15, C2×C4○D4, C22×D5 [×7], S3×C23, D30 [×7], C23×D5, S3×C4○D4, C22×D15 [×7], D5×C4○D4, C23×D15, C4○D4×D15

Generators and relations
 G = < a,b,c,d,e | a4=c2=d15=e2=1, b2=a2, ab=ba, ac=ca, ad=da, ae=ea, cbc=a2b, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Smallest permutation representation
On 120 points
Generators in S120
(1 46 17 43)(2 47 18 44)(3 48 19 45)(4 49 20 31)(5 50 21 32)(6 51 22 33)(7 52 23 34)(8 53 24 35)(9 54 25 36)(10 55 26 37)(11 56 27 38)(12 57 28 39)(13 58 29 40)(14 59 30 41)(15 60 16 42)(61 106 87 98)(62 107 88 99)(63 108 89 100)(64 109 90 101)(65 110 76 102)(66 111 77 103)(67 112 78 104)(68 113 79 105)(69 114 80 91)(70 115 81 92)(71 116 82 93)(72 117 83 94)(73 118 84 95)(74 119 85 96)(75 120 86 97)
(1 62 17 88)(2 63 18 89)(3 64 19 90)(4 65 20 76)(5 66 21 77)(6 67 22 78)(7 68 23 79)(8 69 24 80)(9 70 25 81)(10 71 26 82)(11 72 27 83)(12 73 28 84)(13 74 29 85)(14 75 30 86)(15 61 16 87)(31 102 49 110)(32 103 50 111)(33 104 51 112)(34 105 52 113)(35 91 53 114)(36 92 54 115)(37 93 55 116)(38 94 56 117)(39 95 57 118)(40 96 58 119)(41 97 59 120)(42 98 60 106)(43 99 46 107)(44 100 47 108)(45 101 48 109)
(61 87)(62 88)(63 89)(64 90)(65 76)(66 77)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)(73 84)(74 85)(75 86)(91 114)(92 115)(93 116)(94 117)(95 118)(96 119)(97 120)(98 106)(99 107)(100 108)(101 109)(102 110)(103 111)(104 112)(105 113)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 16)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)(31 57)(32 56)(33 55)(34 54)(35 53)(36 52)(37 51)(38 50)(39 49)(40 48)(41 47)(42 46)(43 60)(44 59)(45 58)(61 88)(62 87)(63 86)(64 85)(65 84)(66 83)(67 82)(68 81)(69 80)(70 79)(71 78)(72 77)(73 76)(74 90)(75 89)(91 114)(92 113)(93 112)(94 111)(95 110)(96 109)(97 108)(98 107)(99 106)(100 120)(101 119)(102 118)(103 117)(104 116)(105 115)

G:=sub<Sym(120)| (1,46,17,43)(2,47,18,44)(3,48,19,45)(4,49,20,31)(5,50,21,32)(6,51,22,33)(7,52,23,34)(8,53,24,35)(9,54,25,36)(10,55,26,37)(11,56,27,38)(12,57,28,39)(13,58,29,40)(14,59,30,41)(15,60,16,42)(61,106,87,98)(62,107,88,99)(63,108,89,100)(64,109,90,101)(65,110,76,102)(66,111,77,103)(67,112,78,104)(68,113,79,105)(69,114,80,91)(70,115,81,92)(71,116,82,93)(72,117,83,94)(73,118,84,95)(74,119,85,96)(75,120,86,97), (1,62,17,88)(2,63,18,89)(3,64,19,90)(4,65,20,76)(5,66,21,77)(6,67,22,78)(7,68,23,79)(8,69,24,80)(9,70,25,81)(10,71,26,82)(11,72,27,83)(12,73,28,84)(13,74,29,85)(14,75,30,86)(15,61,16,87)(31,102,49,110)(32,103,50,111)(33,104,51,112)(34,105,52,113)(35,91,53,114)(36,92,54,115)(37,93,55,116)(38,94,56,117)(39,95,57,118)(40,96,58,119)(41,97,59,120)(42,98,60,106)(43,99,46,107)(44,100,47,108)(45,101,48,109), (61,87)(62,88)(63,89)(64,90)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112)(105,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(41,47)(42,46)(43,60)(44,59)(45,58)(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81)(69,80)(70,79)(71,78)(72,77)(73,76)(74,90)(75,89)(91,114)(92,113)(93,112)(94,111)(95,110)(96,109)(97,108)(98,107)(99,106)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115)>;

G:=Group( (1,46,17,43)(2,47,18,44)(3,48,19,45)(4,49,20,31)(5,50,21,32)(6,51,22,33)(7,52,23,34)(8,53,24,35)(9,54,25,36)(10,55,26,37)(11,56,27,38)(12,57,28,39)(13,58,29,40)(14,59,30,41)(15,60,16,42)(61,106,87,98)(62,107,88,99)(63,108,89,100)(64,109,90,101)(65,110,76,102)(66,111,77,103)(67,112,78,104)(68,113,79,105)(69,114,80,91)(70,115,81,92)(71,116,82,93)(72,117,83,94)(73,118,84,95)(74,119,85,96)(75,120,86,97), (1,62,17,88)(2,63,18,89)(3,64,19,90)(4,65,20,76)(5,66,21,77)(6,67,22,78)(7,68,23,79)(8,69,24,80)(9,70,25,81)(10,71,26,82)(11,72,27,83)(12,73,28,84)(13,74,29,85)(14,75,30,86)(15,61,16,87)(31,102,49,110)(32,103,50,111)(33,104,51,112)(34,105,52,113)(35,91,53,114)(36,92,54,115)(37,93,55,116)(38,94,56,117)(39,95,57,118)(40,96,58,119)(41,97,59,120)(42,98,60,106)(43,99,46,107)(44,100,47,108)(45,101,48,109), (61,87)(62,88)(63,89)(64,90)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112)(105,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(41,47)(42,46)(43,60)(44,59)(45,58)(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81)(69,80)(70,79)(71,78)(72,77)(73,76)(74,90)(75,89)(91,114)(92,113)(93,112)(94,111)(95,110)(96,109)(97,108)(98,107)(99,106)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115) );

G=PermutationGroup([(1,46,17,43),(2,47,18,44),(3,48,19,45),(4,49,20,31),(5,50,21,32),(6,51,22,33),(7,52,23,34),(8,53,24,35),(9,54,25,36),(10,55,26,37),(11,56,27,38),(12,57,28,39),(13,58,29,40),(14,59,30,41),(15,60,16,42),(61,106,87,98),(62,107,88,99),(63,108,89,100),(64,109,90,101),(65,110,76,102),(66,111,77,103),(67,112,78,104),(68,113,79,105),(69,114,80,91),(70,115,81,92),(71,116,82,93),(72,117,83,94),(73,118,84,95),(74,119,85,96),(75,120,86,97)], [(1,62,17,88),(2,63,18,89),(3,64,19,90),(4,65,20,76),(5,66,21,77),(6,67,22,78),(7,68,23,79),(8,69,24,80),(9,70,25,81),(10,71,26,82),(11,72,27,83),(12,73,28,84),(13,74,29,85),(14,75,30,86),(15,61,16,87),(31,102,49,110),(32,103,50,111),(33,104,51,112),(34,105,52,113),(35,91,53,114),(36,92,54,115),(37,93,55,116),(38,94,56,117),(39,95,57,118),(40,96,58,119),(41,97,59,120),(42,98,60,106),(43,99,46,107),(44,100,47,108),(45,101,48,109)], [(61,87),(62,88),(63,89),(64,90),(65,76),(66,77),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83),(73,84),(74,85),(75,86),(91,114),(92,115),(93,116),(94,117),(95,118),(96,119),(97,120),(98,106),(99,107),(100,108),(101,109),(102,110),(103,111),(104,112),(105,113)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,16),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17),(31,57),(32,56),(33,55),(34,54),(35,53),(36,52),(37,51),(38,50),(39,49),(40,48),(41,47),(42,46),(43,60),(44,59),(45,58),(61,88),(62,87),(63,86),(64,85),(65,84),(66,83),(67,82),(68,81),(69,80),(70,79),(71,78),(72,77),(73,76),(74,90),(75,89),(91,114),(92,113),(93,112),(94,111),(95,110),(96,109),(97,108),(98,107),(99,106),(100,120),(101,119),(102,118),(103,117),(104,116),(105,115)])

Matrix representation G ⊆ GL6(𝔽61)

6000000
0600000
0060000
0006000
0000500
0000050
,
6000000
0600000
001000
000100
0000609
0000541
,
100000
010000
001000
000100
000010
0000760
,
60430000
18180000
0012000
0095900
000010
000001
,
60430000
010000
0012000
0006000
0000600
0000060

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,50,0,0,0,0,0,0,50],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,54,0,0,0,0,9,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,7,0,0,0,0,0,60],[60,18,0,0,0,0,43,18,0,0,0,0,0,0,1,9,0,0,0,0,20,59,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,43,1,0,0,0,0,0,0,1,0,0,0,0,0,20,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60] >;

90 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J5A5B6A6B6C6D10A10B10C···10H12A12B12C12D12E15A15B15C15D20A20B20C20D20E···20J30A30B30C30D30E···30P60A···60H60I···60T
order122222222234444444444556666101010···101212121212151515152020202020···203030303030···3060···6060···60
size1122215153030302112221515303030222444224···422444222222224···422224···42···24···4

90 irreducible representations

dim111111112222222222222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D5D6D6D6C4○D4D10D10D10D15D30D30D30S3×C4○D4D5×C4○D4C4○D4×D15
kernelC4○D4×D15C2×C4×D15D6011C2D4×D15D42D15Q8×D15Q83D15C15×C4○D4C5×C4○D4C3×C4○D4C2×C20C5×D4C5×Q8D15C2×C12C3×D4C3×Q8C4○D4C2×C4D4Q8C5C3C1
# reps13333111123314662412124248

In GAP, Magma, Sage, TeX

C_4\circ D_4\times D_{15}
% in TeX

G:=Group("C4oD4xD15");
// GroupNames label

G:=SmallGroup(480,1175);
// by ID

G=gap.SmallGroup(480,1175);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,100,346,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^2=d^15=e^2=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=a^2*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽