Copied to
clipboard

?

G = D2016D6order 480 = 25·3·5

10th semidirect product of D20 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2016D6, D1216D10, C60.62C23, C30.38C24, D30.42C23, Dic3011C22, Dic15.22C23, (C4×D5)⋊11D6, (Q8×D15)⋊7C2, (C5×Q8)⋊15D6, Q810(S3×D5), (C4×S3)⋊11D10, C20⋊D66C2, Q82D59S3, (C3×Q8)⋊12D10, Q83S36D5, D153(C4○D4), D205S37C2, D125D57C2, (S3×C20)⋊8C22, (D5×C12)⋊8C22, C15⋊D46C22, C6.38(C23×D5), (C5×D12)⋊12C22, (C3×D20)⋊12C22, C20.62(C22×S3), C10.38(S3×C23), (Q8×C15)⋊10C22, D6.17(C22×D5), (C6×D5).16C23, C12.62(C22×D5), (S3×C10).19C23, (S3×Dic5)⋊14C22, (D5×Dic3)⋊14C22, (C4×D15).23C22, D10.19(C22×S3), D30.C2.19C22, (C3×Dic5).49C23, Dic5.59(C22×S3), (C5×Dic3).33C23, Dic3.36(C22×D5), (C4×S3×D5)⋊7C2, C56(S3×C4○D4), C36(D5×C4○D4), C4.62(C2×S3×D5), C1516(C2×C4○D4), C2.41(C22×S3×D5), (C3×Q82D5)⋊6C2, (C5×Q83S3)⋊6C2, (C2×S3×D5).13C22, SmallGroup(480,1110)

Series: Derived Chief Lower central Upper central

C1C30 — D2016D6
C1C5C15C30C6×D5C2×S3×D5C4×S3×D5 — D2016D6
C15C30 — D2016D6

Subgroups: 1660 in 328 conjugacy classes, 110 normal (24 characteristic)
C1, C2, C2 [×8], C3, C4 [×3], C4 [×5], C22 [×13], C5, S3 [×5], C6, C6 [×3], C2×C4 [×16], D4 [×12], Q8, Q8 [×3], C23 [×3], D5 [×5], C10, C10 [×3], Dic3, Dic3 [×3], C12 [×3], C12, D6 [×3], D6 [×7], C2×C6 [×3], C15, C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5, Dic5 [×3], C20 [×3], C20, D10 [×3], D10 [×7], C2×C10 [×3], Dic6 [×3], C4×S3 [×3], C4×S3 [×7], D12 [×3], C2×Dic3 [×3], C3⋊D4 [×6], C2×C12 [×3], C3×D4 [×3], C3×Q8, C22×S3 [×3], C5×S3 [×3], C3×D5 [×3], D15 [×2], C30, C2×C4○D4, Dic10 [×3], C4×D5 [×3], C4×D5 [×7], D20 [×3], C2×Dic5 [×3], C5⋊D4 [×6], C2×C20 [×3], C5×D4 [×3], C5×Q8, C22×D5 [×3], S3×C2×C4 [×3], C4○D12 [×3], S3×D4 [×3], D42S3 [×3], S3×Q8, Q83S3, C3×C4○D4, C5×Dic3, C3×Dic5, Dic15 [×3], C60 [×3], S3×D5 [×6], C6×D5 [×3], S3×C10 [×3], D30, C2×C4×D5 [×3], C4○D20 [×3], D4×D5 [×3], D42D5 [×3], Q8×D5, Q82D5, C5×C4○D4, S3×C4○D4, D5×Dic3 [×3], S3×Dic5 [×3], D30.C2, C15⋊D4 [×6], D5×C12 [×3], C3×D20 [×3], S3×C20 [×3], C5×D12 [×3], Dic30 [×3], C4×D15 [×3], Q8×C15, C2×S3×D5 [×3], D5×C4○D4, D205S3 [×3], D125D5 [×3], C4×S3×D5 [×3], C20⋊D6 [×3], C3×Q82D5, C5×Q83S3, Q8×D15, D2016D6

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C4○D4 [×2], C24, D10 [×7], C22×S3 [×7], C2×C4○D4, C22×D5 [×7], S3×C23, S3×D5, C23×D5, S3×C4○D4, C2×S3×D5 [×3], D5×C4○D4, C22×S3×D5, D2016D6

Generators and relations
 G = < a,b,c,d | a20=b2=c6=d2=1, bab=a-1, cac-1=a9, ad=da, cbc-1=a18b, dbd=a10b, dcd=c-1 >

Smallest permutation representation
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 20)(12 19)(13 18)(14 17)(15 16)(21 30)(22 29)(23 28)(24 27)(25 26)(31 40)(32 39)(33 38)(34 37)(35 36)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(53 60)(54 59)(55 58)(56 57)(61 70)(62 69)(63 68)(64 67)(65 66)(71 80)(72 79)(73 78)(74 77)(75 76)(81 86)(82 85)(83 84)(87 100)(88 99)(89 98)(90 97)(91 96)(92 95)(93 94)(101 102)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)(111 112)
(1 76 89 102 42 36)(2 65 90 111 43 25)(3 74 91 120 44 34)(4 63 92 109 45 23)(5 72 93 118 46 32)(6 61 94 107 47 21)(7 70 95 116 48 30)(8 79 96 105 49 39)(9 68 97 114 50 28)(10 77 98 103 51 37)(11 66 99 112 52 26)(12 75 100 101 53 35)(13 64 81 110 54 24)(14 73 82 119 55 33)(15 62 83 108 56 22)(16 71 84 117 57 31)(17 80 85 106 58 40)(18 69 86 115 59 29)(19 78 87 104 60 38)(20 67 88 113 41 27)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 21)(17 22)(18 23)(19 24)(20 25)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 71)(48 72)(49 73)(50 74)(51 75)(52 76)(53 77)(54 78)(55 79)(56 80)(57 61)(58 62)(59 63)(60 64)(81 104)(82 105)(83 106)(84 107)(85 108)(86 109)(87 110)(88 111)(89 112)(90 113)(91 114)(92 115)(93 116)(94 117)(95 118)(96 119)(97 120)(98 101)(99 102)(100 103)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,10)(2,9)(3,8)(4,7)(5,6)(11,20)(12,19)(13,18)(14,17)(15,16)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,70)(62,69)(63,68)(64,67)(65,66)(71,80)(72,79)(73,78)(74,77)(75,76)(81,86)(82,85)(83,84)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112), (1,76,89,102,42,36)(2,65,90,111,43,25)(3,74,91,120,44,34)(4,63,92,109,45,23)(5,72,93,118,46,32)(6,61,94,107,47,21)(7,70,95,116,48,30)(8,79,96,105,49,39)(9,68,97,114,50,28)(10,77,98,103,51,37)(11,66,99,112,52,26)(12,75,100,101,53,35)(13,64,81,110,54,24)(14,73,82,119,55,33)(15,62,83,108,56,22)(16,71,84,117,57,31)(17,80,85,106,58,40)(18,69,86,115,59,29)(19,78,87,104,60,38)(20,67,88,113,41,27), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,21)(17,22)(18,23)(19,24)(20,25)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,61)(58,62)(59,63)(60,64)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,101)(99,102)(100,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,10)(2,9)(3,8)(4,7)(5,6)(11,20)(12,19)(13,18)(14,17)(15,16)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)(61,70)(62,69)(63,68)(64,67)(65,66)(71,80)(72,79)(73,78)(74,77)(75,76)(81,86)(82,85)(83,84)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94)(101,102)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112), (1,76,89,102,42,36)(2,65,90,111,43,25)(3,74,91,120,44,34)(4,63,92,109,45,23)(5,72,93,118,46,32)(6,61,94,107,47,21)(7,70,95,116,48,30)(8,79,96,105,49,39)(9,68,97,114,50,28)(10,77,98,103,51,37)(11,66,99,112,52,26)(12,75,100,101,53,35)(13,64,81,110,54,24)(14,73,82,119,55,33)(15,62,83,108,56,22)(16,71,84,117,57,31)(17,80,85,106,58,40)(18,69,86,115,59,29)(19,78,87,104,60,38)(20,67,88,113,41,27), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,21)(17,22)(18,23)(19,24)(20,25)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,61)(58,62)(59,63)(60,64)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,101)(99,102)(100,103) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,20),(12,19),(13,18),(14,17),(15,16),(21,30),(22,29),(23,28),(24,27),(25,26),(31,40),(32,39),(33,38),(34,37),(35,36),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(53,60),(54,59),(55,58),(56,57),(61,70),(62,69),(63,68),(64,67),(65,66),(71,80),(72,79),(73,78),(74,77),(75,76),(81,86),(82,85),(83,84),(87,100),(88,99),(89,98),(90,97),(91,96),(92,95),(93,94),(101,102),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113),(111,112)], [(1,76,89,102,42,36),(2,65,90,111,43,25),(3,74,91,120,44,34),(4,63,92,109,45,23),(5,72,93,118,46,32),(6,61,94,107,47,21),(7,70,95,116,48,30),(8,79,96,105,49,39),(9,68,97,114,50,28),(10,77,98,103,51,37),(11,66,99,112,52,26),(12,75,100,101,53,35),(13,64,81,110,54,24),(14,73,82,119,55,33),(15,62,83,108,56,22),(16,71,84,117,57,31),(17,80,85,106,58,40),(18,69,86,115,59,29),(19,78,87,104,60,38),(20,67,88,113,41,27)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,21),(17,22),(18,23),(19,24),(20,25),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,71),(48,72),(49,73),(50,74),(51,75),(52,76),(53,77),(54,78),(55,79),(56,80),(57,61),(58,62),(59,63),(60,64),(81,104),(82,105),(83,106),(84,107),(85,108),(86,109),(87,110),(88,111),(89,112),(90,113),(91,114),(92,115),(93,116),(94,117),(95,118),(96,119),(97,120),(98,101),(99,102),(100,103)])

Matrix representation G ⊆ GL6(𝔽61)

4310000
6000000
0060000
0006000
0000011
0000110
,
1430000
0600000
0060000
0006000
0000050
0000110
,
18430000
1430000
001100
0060000
000001
000010
,
6000000
0600000
001100
0006000
0000060
0000600

G:=sub<GL(6,GF(61))| [43,60,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,11,0,0,0,0,11,0],[1,0,0,0,0,0,43,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,11,0,0,0,0,50,0],[18,1,0,0,0,0,43,43,0,0,0,0,0,0,1,60,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,1,60,0,0,0,0,0,0,0,60,0,0,0,0,60,0] >;

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J5A5B6A6B6C6D10A10B10C···10H12A12B12C12D12E15A15B20A···20F20G20H20I20J30A30B60A···60F
order122222222234444444444556666101010···101212121212151520···2020202020303060···60
size116661010101515222233553030302222020202212···124441010444···46666448···8

60 irreducible representations

dim1111111122222222244448
type++++++++++++++++++-
imageC1C2C2C2C2C2C2C2S3D5D6D6D6C4○D4D10D10D10S3×D5S3×C4○D4C2×S3×D5D5×C4○D4D2016D6
kernelD2016D6D205S3D125D5C4×S3×D5C20⋊D6C3×Q82D5C5×Q83S3Q8×D15Q82D5Q83S3C4×D5D20C5×Q8D15C4×S3D12C3×Q8Q8C5C4C3C1
# reps1333311112331466222642

In GAP, Magma, Sage, TeX

D_{20}\rtimes_{16}D_6
% in TeX

G:=Group("D20:16D6");
// GroupNames label

G:=SmallGroup(480,1110);
// by ID

G=gap.SmallGroup(480,1110);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,100,675,346,185,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^6=d^2=1,b*a*b=a^-1,c*a*c^-1=a^9,a*d=d*a,c*b*c^-1=a^18*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽