Non-nilpotent groups

See nilpotent groups.

Groups of order 6

dρLabelID
S3Symmetric group on 3 letters; = D3 = GL2(𝔽2) = triangle symmetries = 1st non-abelian group32+S36,1

Groups of order 10

dρLabelID
D5Dihedral group; = pentagon symmetries52+D510,1

Groups of order 12

dρLabelID
A4Alternating group on 4 letters; = PSL2(𝔽3) = L2(3) = tetrahedron rotations43+A412,3
D6Dihedral group; = C2×S3 = hexagon symmetries62+D612,4
Dic3Dicyclic group; = C3C4122-Dic312,1

Groups of order 14

dρLabelID
D7Dihedral group72+D714,1

Groups of order 18

dρLabelID
D9Dihedral group92+D918,1
C3⋊S3The semidirect product of C3 and S3 acting via S3/C3=C29C3:S318,4
C3×S3Direct product of C3 and S3; = U2(𝔽2)62C3xS318,3

Groups of order 20

dρLabelID
D10Dihedral group; = C2×D5102+D1020,4
F5Frobenius group; = C5C4 = AGL1(𝔽5) = Aut(D5) = Hol(C5) = Sz(2)54+F520,3
Dic5Dicyclic group; = C52C4202-Dic520,1

Groups of order 21

dρLabelID
C7⋊C3The semidirect product of C7 and C3 acting faithfully73C7:C321,1

Groups of order 22

dρLabelID
D11Dihedral group112+D1122,1

Groups of order 24

dρLabelID
S4Symmetric group on 4 letters; = PGL2(𝔽3) = Aut(Q8) = Hol(C22) = tetrahedron symmetries = cube/octahedron rotations43+S424,12
D12Dihedral group122+D1224,6
Dic6Dicyclic group; = C3Q8242-Dic624,4
SL2(𝔽3)Special linear group on 𝔽32; = Q8C3 = 2T = <2,3,3> = 1st non-monomial group82-SL(2,3)24,3
C3⋊D4The semidirect product of C3 and D4 acting via D4/C22=C2122C3:D424,8
C3⋊C8The semidirect product of C3 and C8 acting via C8/C4=C2242C3:C824,1
C2×A4Direct product of C2 and A4; = AΣL1(𝔽8)63+C2xA424,13
C4×S3Direct product of C4 and S3122C4xS324,5
C22×S3Direct product of C22 and S312C2^2xS324,14
C2×Dic3Direct product of C2 and Dic324C2xDic324,7

Groups of order 26

dρLabelID
D13Dihedral group132+D1326,1

Groups of order 28

dρLabelID
D14Dihedral group; = C2×D7142+D1428,3
Dic7Dicyclic group; = C7C4282-Dic728,1

Groups of order 30

dρLabelID
D15Dihedral group152+D1530,3
C5×S3Direct product of C5 and S3152C5xS330,1
C3×D5Direct product of C3 and D5152C3xD530,2

Groups of order 34

dρLabelID
D17Dihedral group172+D1734,1

Groups of order 36

dρLabelID
D18Dihedral group; = C2×D9182+D1836,4
Dic9Dicyclic group; = C9C4362-Dic936,1
C32⋊C4The semidirect product of C32 and C4 acting faithfully64+C3^2:C436,9
C3⋊Dic3The semidirect product of C3 and Dic3 acting via Dic3/C6=C236C3:Dic336,7
C3.A4The central extension by C3 of A4183C3.A436,3
S32Direct product of S3 and S3; = Spin+4(𝔽2) = Hol(S3)64+S3^236,10
S3×C6Direct product of C6 and S3122S3xC636,12
C3×A4Direct product of C3 and A4123C3xA436,11
C3×Dic3Direct product of C3 and Dic3122C3xDic336,6
C2×C3⋊S3Direct product of C2 and C3⋊S318C2xC3:S336,13

Groups of order 38

dρLabelID
D19Dihedral group192+D1938,1

Groups of order 39

dρLabelID
C13⋊C3The semidirect product of C13 and C3 acting faithfully133C13:C339,1

Groups of order 40

dρLabelID
D20Dihedral group202+D2040,6
Dic10Dicyclic group; = C5Q8402-Dic1040,4
C5⋊D4The semidirect product of C5 and D4 acting via D4/C22=C2202C5:D440,8
C5⋊C8The semidirect product of C5 and C8 acting via C8/C2=C4404-C5:C840,3
C52C8The semidirect product of C5 and C8 acting via C8/C4=C2402C5:2C840,1
C2×F5Direct product of C2 and F5; = Aut(D10) = Hol(C10)104+C2xF540,12
C4×D5Direct product of C4 and D5202C4xD540,5
C22×D5Direct product of C22 and D520C2^2xD540,13
C2×Dic5Direct product of C2 and Dic540C2xDic540,7

Groups of order 42

dρLabelID
D21Dihedral group212+D2142,5
F7Frobenius group; = C7C6 = AGL1(𝔽7) = Aut(D7) = Hol(C7)76+F742,1
S3×C7Direct product of C7 and S3212S3xC742,3
C3×D7Direct product of C3 and D7212C3xD742,4
C2×C7⋊C3Direct product of C2 and C7⋊C3143C2xC7:C342,2

Groups of order 44

dρLabelID
D22Dihedral group; = C2×D11222+D2244,3
Dic11Dicyclic group; = C11C4442-Dic1144,1

Groups of order 46

dρLabelID
D23Dihedral group232+D2346,1

Groups of order 48

dρLabelID
D24Dihedral group242+D2448,7
Dic12Dicyclic group; = C31Q16482-Dic1248,8
GL2(𝔽3)General linear group on 𝔽32; = Q8S3 = Aut(C32)82GL(2,3)48,29
CSU2(𝔽3)Conformal special unitary group on 𝔽32; = Q8.S3 = 2O = <2,3,4>162-CSU(2,3)48,28
C4○D12Central product of C4 and D12242C4oD1248,37
A4⋊C4The semidirect product of A4 and C4 acting via C4/C2=C2; = SL2(ℤ/4ℤ)123A4:C448,30
C42⋊C3The semidirect product of C42 and C3 acting faithfully123C4^2:C348,3
C22⋊A4The semidirect product of C22 and A4 acting via A4/C22=C312C2^2:A448,50
D6⋊C4The semidirect product of D6 and C4 acting via C4/C2=C224D6:C448,14
D4⋊S3The semidirect product of D4 and S3 acting via S3/C3=C2244+D4:S348,15
C8⋊S33rd semidirect product of C8 and S3 acting via S3/C3=C2242C8:S348,5
C24⋊C22nd semidirect product of C24 and C2 acting faithfully242C24:C248,6
D42S3The semidirect product of D4 and S3 acting through Inn(D4)244-D4:2S348,39
Q82S3The semidirect product of Q8 and S3 acting via S3/C3=C2244+Q8:2S348,17
Q83S3The semidirect product of Q8 and S3 acting through Inn(Q8)244+Q8:3S348,41
C3⋊C16The semidirect product of C3 and C16 acting via C16/C8=C2482C3:C1648,1
C4⋊Dic3The semidirect product of C4 and Dic3 acting via Dic3/C6=C248C4:Dic348,13
C3⋊Q16The semidirect product of C3 and Q16 acting via Q16/Q8=C2484-C3:Q1648,18
Dic3⋊C4The semidirect product of Dic3 and C4 acting via C4/C2=C248Dic3:C448,12
C4.A4The central extension by C4 of A4162C4.A448,33
D4.S3The non-split extension by D4 of S3 acting via S3/C3=C2244-D4.S348,16
C4.Dic3The non-split extension by C4 of Dic3 acting via Dic3/C6=C2242C4.Dic348,10
C6.D47th non-split extension by C6 of D4 acting via D4/C22=C224C6.D448,19
C2×S4Direct product of C2 and S4; = O3(𝔽3) = cube/octahedron symmetries63+C2xS448,48
C4×A4Direct product of C4 and A4123C4xA448,31
S3×D4Direct product of S3 and D4; = Aut(D12) = Hol(C12)124+S3xD448,38
C22×A4Direct product of C22 and A412C2^2xA448,49
C2×SL2(𝔽3)Direct product of C2 and SL2(𝔽3)16C2xSL(2,3)48,32
S3×C8Direct product of C8 and S3242S3xC848,4
S3×Q8Direct product of S3 and Q8244-S3xQ848,40
C2×D12Direct product of C2 and D1224C2xD1248,36
S3×C23Direct product of C23 and S324S3xC2^348,51
C4×Dic3Direct product of C4 and Dic348C4xDic348,11
C2×Dic6Direct product of C2 and Dic648C2xDic648,34
C22×Dic3Direct product of C22 and Dic348C2^2xDic348,42
S3×C2×C4Direct product of C2×C4 and S324S3xC2xC448,35
C2×C3⋊D4Direct product of C2 and C3⋊D424C2xC3:D448,43
C2×C3⋊C8Direct product of C2 and C3⋊C848C2xC3:C848,9

Groups of order 50

dρLabelID
D25Dihedral group252+D2550,1
C5⋊D5The semidirect product of C5 and D5 acting via D5/C5=C225C5:D550,4
C5×D5Direct product of C5 and D5; = AΣL1(𝔽25)102C5xD550,3

Groups of order 52

dρLabelID
D26Dihedral group; = C2×D13262+D2652,4
Dic13Dicyclic group; = C132C4522-Dic1352,1
C13⋊C4The semidirect product of C13 and C4 acting faithfully134+C13:C452,3

Groups of order 54

dρLabelID
D27Dihedral group272+D2754,1
C9⋊C6The semidirect product of C9 and C6 acting faithfully; = Aut(D9) = Hol(C9)96+C9:C654,6
C32⋊C6The semidirect product of C32 and C6 acting faithfully96+C3^2:C654,5
He3⋊C22nd semidirect product of He3 and C2 acting faithfully; = Aut(3- 1+2)93He3:C254,8
C9⋊S3The semidirect product of C9 and S3 acting via S3/C3=C227C9:S354,7
C33⋊C23rd semidirect product of C33 and C2 acting faithfully27C3^3:C254,14
S3×C9Direct product of C9 and S3182S3xC954,4
C3×D9Direct product of C3 and D9182C3xD954,3
S3×C32Direct product of C32 and S318S3xC3^254,12
C3×C3⋊S3Direct product of C3 and C3⋊S318C3xC3:S354,13

Groups of order 55

dρLabelID
C11⋊C5The semidirect product of C11 and C5 acting faithfully115C11:C555,1

Groups of order 56

dρLabelID
D28Dihedral group282+D2856,5
F8Frobenius group; = C23C7 = AGL1(𝔽8)87+F856,11
Dic14Dicyclic group; = C7Q8562-Dic1456,3
C7⋊D4The semidirect product of C7 and D4 acting via D4/C22=C2282C7:D456,7
C7⋊C8The semidirect product of C7 and C8 acting via C8/C4=C2562C7:C856,1
C4×D7Direct product of C4 and D7282C4xD756,4
C22×D7Direct product of C22 and D728C2^2xD756,12
C2×Dic7Direct product of C2 and Dic756C2xDic756,6

Groups of order 57

dρLabelID
C19⋊C3The semidirect product of C19 and C3 acting faithfully193C19:C357,1

Groups of order 58

dρLabelID
D29Dihedral group292+D2958,1

Groups of order 60

dρLabelID
A5Alternating group on 5 letters; = SL2(𝔽4) = L2(5) = L2(4) = icosahedron/dodecahedron rotations; 1st non-abelian simple53+A560,5
D30Dihedral group; = C2×D15302+D3060,12
Dic15Dicyclic group; = C3Dic5602-Dic1560,3
C3⋊F5The semidirect product of C3 and F5 acting via F5/D5=C2154C3:F560,7
S3×D5Direct product of S3 and D5154+S3xD560,8
C3×F5Direct product of C3 and F5154C3xF560,6
C5×A4Direct product of C5 and A4203C5xA460,9
C6×D5Direct product of C6 and D5302C6xD560,10
S3×C10Direct product of C10 and S3302S3xC1060,11
C5×Dic3Direct product of C5 and Dic3602C5xDic360,1
C3×Dic5Direct product of C3 and Dic5602C3xDic560,2

Groups of order 62

dρLabelID
D31Dihedral group312+D3162,1

Groups of order 63

dρLabelID
C7⋊C9The semidirect product of C7 and C9 acting via C9/C3=C3633C7:C963,1
C3×C7⋊C3Direct product of C3 and C7⋊C3213C3xC7:C363,3

Groups of order 66

dρLabelID
D33Dihedral group332+D3366,3
S3×C11Direct product of C11 and S3332S3xC1166,1
C3×D11Direct product of C3 and D11332C3xD1166,2

Groups of order 68

dρLabelID
D34Dihedral group; = C2×D17342+D3468,4
Dic17Dicyclic group; = C172C4682-Dic1768,1
C17⋊C4The semidirect product of C17 and C4 acting faithfully174+C17:C468,3

Groups of order 70

dρLabelID
D35Dihedral group352+D3570,3
C7×D5Direct product of C7 and D5352C7xD570,1
C5×D7Direct product of C5 and D7352C5xD770,2

Groups of order 72

dρLabelID
D36Dihedral group362+D3672,6
F9Frobenius group; = C32C8 = AGL1(𝔽9)98+F972,39
Dic18Dicyclic group; = C9Q8722-Dic1872,4
PSU3(𝔽2)Projective special unitary group on 𝔽23; = C32Q8 = M998+PSU(3,2)72,41
S3≀C2Wreath product of S3 by C2; = SO+4(𝔽2)64+S3wrC272,40
C3⋊S4The semidirect product of C3 and S4 acting via S4/A4=C2126+C3:S472,43
C3⋊D12The semidirect product of C3 and D12 acting via D12/D6=C2124+C3:D1272,23
D6⋊S31st semidirect product of D6 and S3 acting via S3/C3=C2244-D6:S372,22
C322C8The semidirect product of C32 and C8 acting via C8/C2=C4244-C3^2:2C872,19
C322Q8The semidirect product of C32 and Q8 acting via Q8/C2=C22244-C3^2:2Q872,24
C9⋊D4The semidirect product of C9 and D4 acting via D4/C22=C2362C9:D472,8
C12⋊S31st semidirect product of C12 and S3 acting via S3/C3=C236C12:S372,33
C327D42nd semidirect product of C32 and D4 acting via D4/C22=C236C3^2:7D472,35
C9⋊C8The semidirect product of C9 and C8 acting via C8/C4=C2722C9:C872,1
Q8⋊C9The semidirect product of Q8 and C9 acting via C9/C3=C3722Q8:C972,3
C324C82nd semidirect product of C32 and C8 acting via C8/C4=C272C3^2:4C872,13
C324Q82nd semidirect product of C32 and Q8 acting via Q8/C4=C272C3^2:4Q872,31
C6.D62nd non-split extension by C6 of D6 acting via D6/S3=C2124+C6.D672,21
C3.S4The non-split extension by C3 of S4 acting via S4/A4=C2186+C3.S472,15
C3×S4Direct product of C3 and S4123C3xS472,42
S3×A4Direct product of S3 and A4126+S3xA472,44
C6×A4Direct product of C6 and A4183C6xA472,47
S3×C12Direct product of C12 and S3242S3xC1272,27
C3×D12Direct product of C3 and D12242C3xD1272,28
S3×Dic3Direct product of S3 and Dic3244-S3xDic372,20
C3×Dic6Direct product of C3 and Dic6242C3xDic672,26
C6×Dic3Direct product of C6 and Dic324C6xDic372,29
C3×SL2(𝔽3)Direct product of C3 and SL2(𝔽3)242C3xSL(2,3)72,25
C4×D9Direct product of C4 and D9362C4xD972,5
C22×D9Direct product of C22 and D936C2^2xD972,17
C2×Dic9Direct product of C2 and Dic972C2xDic972,7
C2×S32Direct product of C2, S3 and S3124+C2xS3^272,46
C3×C3⋊D4Direct product of C3 and C3⋊D4122C3xC3:D472,30
C2×C32⋊C4Direct product of C2 and C32⋊C4124+C2xC3^2:C472,45
C2×C3.A4Direct product of C2 and C3.A4183C2xC3.A472,16
C3×C3⋊C8Direct product of C3 and C3⋊C8242C3xC3:C872,12
S3×C2×C6Direct product of C2×C6 and S324S3xC2xC672,48
C4×C3⋊S3Direct product of C4 and C3⋊S336C4xC3:S372,32
C22×C3⋊S3Direct product of C22 and C3⋊S336C2^2xC3:S372,49
C2×C3⋊Dic3Direct product of C2 and C3⋊Dic372C2xC3:Dic372,34

Groups of order 74

dρLabelID
D37Dihedral group372+D3774,1

Groups of order 75

dρLabelID
C52⋊C3The semidirect product of C52 and C3 acting faithfully153C5^2:C375,2

Groups of order 76

dρLabelID
D38Dihedral group; = C2×D19382+D3876,3
Dic19Dicyclic group; = C19C4762-Dic1976,1

Groups of order 78

dρLabelID
D39Dihedral group392+D3978,5
C13⋊C6The semidirect product of C13 and C6 acting faithfully136+C13:C678,1
S3×C13Direct product of C13 and S3392S3xC1378,3
C3×D13Direct product of C3 and D13392C3xD1378,4
C2×C13⋊C3Direct product of C2 and C13⋊C3263C2xC13:C378,2

Groups of order 80

dρLabelID
D40Dihedral group402+D4080,7
Dic20Dicyclic group; = C51Q16802-Dic2080,8
C4○D20Central product of C4 and D20402C4oD2080,38
C24⋊C5The semidirect product of C24 and C5 acting faithfully105+C2^4:C580,49
C4⋊F5The semidirect product of C4 and F5 acting via F5/D5=C2204C4:F580,31
C22⋊F5The semidirect product of C22 and F5 acting via F5/D5=C2204+C2^2:F580,34
D4⋊D5The semidirect product of D4 and D5 acting via D5/C5=C2404+D4:D580,15
D5⋊C8The semidirect product of D5 and C8 acting via C8/C4=C2404D5:C880,28
Q8⋊D5The semidirect product of Q8 and D5 acting via D5/C5=C2404+Q8:D580,17
C8⋊D53rd semidirect product of C8 and D5 acting via D5/C5=C2402C8:D580,5
C40⋊C22nd semidirect product of C40 and C2 acting faithfully402C40:C280,6
D42D5The semidirect product of D4 and D5 acting through Inn(D4)404-D4:2D580,40
Q82D5The semidirect product of Q8 and D5 acting through Inn(Q8)404+Q8:2D580,42
D10⋊C41st semidirect product of D10 and C4 acting via C4/C2=C240D10:C480,14
C5⋊C16The semidirect product of C5 and C16 acting via C16/C4=C4804C5:C1680,3
C52C16The semidirect product of C5 and C16 acting via C16/C8=C2802C5:2C1680,1
C4⋊Dic5The semidirect product of C4 and Dic5 acting via Dic5/C10=C280C4:Dic580,13
C5⋊Q16The semidirect product of C5 and Q16 acting via Q16/Q8=C2804-C5:Q1680,18
C4.F5The non-split extension by C4 of F5 acting via F5/D5=C2404C4.F580,29
D4.D5The non-split extension by D4 of D5 acting via D5/C5=C2404-D4.D580,16
C4.Dic5The non-split extension by C4 of Dic5 acting via Dic5/C10=C2402C4.Dic580,10
C23.D5The non-split extension by C23 of D5 acting via D5/C5=C240C2^3.D580,19
C22.F5The non-split extension by C22 of F5 acting via F5/D5=C2404-C2^2.F580,33
C10.D41st non-split extension by C10 of D4 acting via D4/C22=C280C10.D480,12
D4×D5Direct product of D4 and D5204+D4xD580,39
C4×F5Direct product of C4 and F5204C4xF580,30
C22×F5Direct product of C22 and F520C2^2xF580,50
C8×D5Direct product of C8 and D5402C8xD580,4
Q8×D5Direct product of Q8 and D5404-Q8xD580,41
C2×D20Direct product of C2 and D2040C2xD2080,37
C23×D5Direct product of C23 and D540C2^3xD580,51
C4×Dic5Direct product of C4 and Dic580C4xDic580,11
C2×Dic10Direct product of C2 and Dic1080C2xDic1080,35
C22×Dic5Direct product of C22 and Dic580C2^2xDic580,43
C2×C4×D5Direct product of C2×C4 and D540C2xC4xD580,36
C2×C5⋊D4Direct product of C2 and C5⋊D440C2xC5:D480,44
C2×C5⋊C8Direct product of C2 and C5⋊C880C2xC5:C880,32
C2×C52C8Direct product of C2 and C52C880C2xC5:2C880,9

Groups of order 82

dρLabelID
D41Dihedral group412+D4182,1

Groups of order 84

dρLabelID
D42Dihedral group; = C2×D21422+D4284,14
Dic21Dicyclic group; = C3Dic7842-Dic2184,5
C7⋊A4The semidirect product of C7 and A4 acting via A4/C22=C3283C7:A484,11
C7⋊C12The semidirect product of C7 and C12 acting via C12/C2=C6286-C7:C1284,1
C2×F7Direct product of C2 and F7; = Aut(D14) = Hol(C14)146+C2xF784,7
S3×D7Direct product of S3 and D7214+S3xD784,8
C7×A4Direct product of C7 and A4283C7xA484,10
C6×D7Direct product of C6 and D7422C6xD784,12
S3×C14Direct product of C14 and S3422S3xC1484,13
C7×Dic3Direct product of C7 and Dic3842C7xDic384,3
C3×Dic7Direct product of C3 and Dic7842C3xDic784,4
C4×C7⋊C3Direct product of C4 and C7⋊C3283C4xC7:C384,2
C22×C7⋊C3Direct product of C22 and C7⋊C328C2^2xC7:C384,9

Groups of order 86

dρLabelID
D43Dihedral group432+D4386,1

Groups of order 88

dρLabelID
D44Dihedral group442+D4488,5
Dic22Dicyclic group; = C11Q8882-Dic2288,3
C11⋊D4The semidirect product of C11 and D4 acting via D4/C22=C2442C11:D488,7
C11⋊C8The semidirect product of C11 and C8 acting via C8/C4=C2882C11:C888,1
C4×D11Direct product of C4 and D11442C4xD1188,4
C22×D11Direct product of C22 and D1144C2^2xD1188,11
C2×Dic11Direct product of C2 and Dic1188C2xDic1188,6

Groups of order 90

dρLabelID
D45Dihedral group452+D4590,3
C3⋊D15The semidirect product of C3 and D15 acting via D15/C15=C245C3:D1590,9
S3×C15Direct product of C15 and S3302S3xC1590,6
C3×D15Direct product of C3 and D15302C3xD1590,7
C5×D9Direct product of C5 and D9452C5xD990,1
C9×D5Direct product of C9 and D5452C9xD590,2
C32×D5Direct product of C32 and D545C3^2xD590,5
C5×C3⋊S3Direct product of C5 and C3⋊S345C5xC3:S390,8

Groups of order 92

dρLabelID
D46Dihedral group; = C2×D23462+D4692,3
Dic23Dicyclic group; = C23C4922-Dic2392,1

Groups of order 93

dρLabelID
C31⋊C3The semidirect product of C31 and C3 acting faithfully313C31:C393,1

Groups of order 94

dρLabelID
D47Dihedral group472+D4794,1

Groups of order 96

dρLabelID
D48Dihedral group482+D4896,6
Dic24Dicyclic group; = C31Q32962-Dic2496,8
U2(𝔽3)Unitary group on 𝔽32; = SL2(𝔽3)2C4242U(2,3)96,67
D4○D12Central product of D4 and D12244+D4oD1296,216
C8○D12Central product of C8 and D12482C8oD1296,108
C4○D24Central product of C4 and D24482C4oD2496,111
Q8○D12Central product of Q8 and D12484-Q8oD1296,217
C22⋊S4The semidirect product of C22 and S4 acting via S4/C22=S386+C2^2:S496,227
C24⋊C61st semidirect product of C24 and C6 acting faithfully86+C2^4:C696,70
C23⋊A42nd semidirect product of C23 and A4 acting faithfully84+C2^3:A496,204
C4⋊S4The semidirect product of C4 and S4 acting via S4/A4=C2126+C4:S496,187
C42⋊S3The semidirect product of C42 and S3 acting faithfully123C4^2:S396,64
A4⋊D4The semidirect product of A4 and D4 acting via D4/C22=C2; = Aut(C42) = GL2(ℤ/4ℤ)126+A4:D496,195
C42⋊C61st semidirect product of C42 and C6 acting faithfully166C4^2:C696,71
A4⋊C8The semidirect product of A4 and C8 acting via C8/C4=C2243A4:C896,65
A4⋊Q8The semidirect product of A4 and Q8 acting via Q8/C4=C2246-A4:Q896,185
C8⋊D61st semidirect product of C8 and D6 acting via D6/C3=C22244+C8:D696,115
D6⋊D41st semidirect product of D6 and D4 acting via D4/C22=C224D6:D496,89
D8⋊S32nd semidirect product of D8 and S3 acting via S3/C3=C2244D8:S396,118
D4⋊D62nd semidirect product of D4 and D6 acting via D6/C6=C2244+D4:D696,156
D46D62nd semidirect product of D4 and D6 acting through Inn(D4)244D4:6D696,211
Q83D62nd semidirect product of Q8 and D6 acting via D6/S3=C2244+Q8:3D696,121
Q8⋊A41st semidirect product of Q8 and A4 acting via A4/C22=C3246-Q8:A496,203
D12⋊C44th semidirect product of D12 and C4 acting via C4/C2=C2244D12:C496,32
C424S33rd semidirect product of C42 and S3 acting via S3/C3=C2242C4^2:4S396,12
C244S31st semidirect product of C24 and S3 acting via S3/C3=C224C2^4:4S396,160
C232D61st semidirect product of C23 and D6 acting via D6/C3=C2224C2^3:2D696,144
Q83Dic32nd semidirect product of Q8 and Dic3 acting via Dic3/C6=C2244Q8:3Dic396,44
D126C224th semidirect product of D12 and C22 acting via C22/C2=C2244D12:6C2^296,139
Q8⋊Dic3The semidirect product of Q8 and Dic3 acting via Dic3/C2=S332Q8:Dic396,66
D6⋊C8The semidirect product of D6 and C8 acting via C8/C4=C248D6:C896,27
C3⋊D16The semidirect product of C3 and D16 acting via D16/D8=C2484+C3:D1696,33
C48⋊C22nd semidirect product of C48 and C2 acting faithfully482C48:C296,7
D83S3The semidirect product of D8 and S3 acting through Inn(D8)484-D8:3S396,119
D63D43rd semidirect product of D6 and D4 acting via D4/C4=C248D6:3D496,145
C4⋊D12The semidirect product of C4 and D12 acting via D12/C12=C248C4:D1296,81
C12⋊D41st semidirect product of C12 and D4 acting via D4/C2=C2248C12:D496,102
C127D41st semidirect product of C12 and D4 acting via D4/C22=C248C12:7D496,137
C123D43rd semidirect product of C12 and D4 acting via D4/C2=C2248C12:3D496,147
D6⋊Q81st semidirect product of D6 and Q8 acting via Q8/C4=C248D6:Q896,103
D63Q83rd semidirect product of D6 and Q8 acting via Q8/C4=C248D6:3Q896,153
D24⋊C25th semidirect product of D24 and C2 acting faithfully484+D24:C296,126
C422S31st semidirect product of C42 and S3 acting via S3/C3=C248C4^2:2S396,79
C427S36th semidirect product of C42 and S3 acting via S3/C3=C248C4^2:7S396,82
C423S32nd semidirect product of C42 and S3 acting via S3/C3=C248C4^2:3S396,83
Q16⋊S32nd semidirect product of Q16 and S3 acting via S3/C3=C2484Q16:S396,125
D4⋊Dic31st semidirect product of D4 and Dic3 acting via Dic3/C6=C248D4:Dic396,39
Dic34D41st semidirect product of Dic3 and D4 acting through Inn(Dic3)48Dic3:4D496,88
Dic3⋊D41st semidirect product of Dic3 and D4 acting via D4/C22=C248Dic3:D496,91
Dic35D42nd semidirect product of Dic3 and D4 acting through Inn(Dic3)48Dic3:5D496,100
C3⋊C32The semidirect product of C3 and C32 acting via C32/C16=C2962C3:C3296,1
C12⋊Q8The semidirect product of C12 and Q8 acting via Q8/C2=C2296C12:Q896,95
C12⋊C81st semidirect product of C12 and C8 acting via C8/C4=C296C12:C896,11
C24⋊C45th semidirect product of C24 and C4 acting via C4/C2=C296C24:C496,22
C241C41st semidirect product of C24 and C4 acting via C4/C2=C296C24:1C496,25
C3⋊Q32The semidirect product of C3 and Q32 acting via Q32/Q16=C2964-C3:Q3296,36
Dic3⋊C8The semidirect product of Dic3 and C8 acting via C8/C4=C296Dic3:C896,21
C122Q81st semidirect product of C12 and Q8 acting via Q8/C4=C296C12:2Q896,76
C8⋊Dic32nd semidirect product of C8 and Dic3 acting via Dic3/C6=C296C8:Dic396,24
Q82Dic31st semidirect product of Q8 and Dic3 acting via Dic3/C6=C296Q8:2Dic396,42
Dic6⋊C45th semidirect product of Dic6 and C4 acting via C4/C2=C296Dic6:C496,94
Dic3⋊Q82nd semidirect product of Dic3 and Q8 acting via Q8/C4=C296Dic3:Q896,151
C4⋊C47S31st semidirect product of C4⋊C4 and S3 acting through Inn(C4⋊C4)48C4:C4:7S396,99
C4⋊C4⋊S36th semidirect product of C4⋊C4 and S3 acting via S3/C3=C248C4:C4:S396,105
C23.3A41st non-split extension by C23 of A4 acting via A4/C22=C3126+C2^3.3A496,3
C23.A42nd non-split extension by C23 of A4 acting faithfully126+C2^3.A496,72
D4.A4The non-split extension by D4 of A4 acting through Inn(D4)164-D4.A496,202
C4.6S43rd central extension by C4 of S4162C4.6S496,192
C4.3S43rd non-split extension by C4 of S4 acting via S4/A4=C2164+C4.3S496,193
Q8.D62nd non-split extension by Q8 of D6 acting via D6/C2=S3164-Q8.D696,190
Q8.A4The non-split extension by Q8 of A4 acting through Inn(Q8)244+Q8.A496,201
C12.D48th non-split extension by C12 of D4 acting via D4/C2=C22244C12.D496,40
C12.46D43rd non-split extension by C12 of D4 acting via D4/C22=C2244+C12.46D496,30
C23.6D61st non-split extension by C23 of D6 acting via D6/C3=C22244C2^3.6D696,13
C23.7D62nd non-split extension by C23 of D6 acting via D6/C3=C22244C2^3.7D696,41
C8.A4The central extension by C8 of A4322C8.A496,74
C4.S42nd non-split extension by C4 of S4 acting via S4/A4=C2324-C4.S496,191
D6.C8The non-split extension by D6 of C8 acting via C8/C4=C2482D6.C896,5
D8.S3The non-split extension by D8 of S3 acting via S3/C3=C2484-D8.S396,34
D12.C4The non-split extension by D12 of C4 acting via C4/C2=C2484D12.C496,114
C6.D82nd non-split extension by C6 of D8 acting via D8/D4=C248C6.D896,16
C8.6D63rd non-split extension by C8 of D6 acting via D6/S3=C2484+C8.6D696,35
C8.D61st non-split extension by C8 of D6 acting via D6/C3=C22484-C8.D696,116
C12.C81st non-split extension by C12 of C8 acting via C8/C4=C2482C12.C896,19
C24.C41st non-split extension by C24 of C4 acting via C4/C2=C2482C24.C496,26
D6.D42nd non-split extension by D6 of D4 acting via D4/C22=C248D6.D496,101
D4.D64th non-split extension by D4 of D6 acting via D6/S3=C2484-D4.D696,122
C2.D242nd central extension by C2 of D2448C2.D2496,28
D4.Dic3The non-split extension by D4 of Dic3 acting through Inn(D4)484D4.Dic396,155
Q8.7D62nd non-split extension by Q8 of D6 acting via D6/S3=C2484Q8.7D696,123
C12.53D410th non-split extension by C12 of D4 acting via D4/C22=C2484C12.53D496,29
C12.47D44th non-split extension by C12 of D4 acting via D4/C22=C2484-C12.47D496,31
C12.55D412nd non-split extension by C12 of D4 acting via D4/C22=C248C12.55D496,37
C12.10D410th non-split extension by C12 of D4 acting via D4/C2=C22484C12.10D496,43
C4.D125th non-split extension by C4 of D12 acting via D12/D6=C248C4.D1296,104
C12.48D45th non-split extension by C12 of D4 acting via D4/C22=C248C12.48D496,131
C12.23D423rd non-split extension by C12 of D4 acting via D4/C2=C2248C12.23D496,154
Q8.11D61st non-split extension by Q8 of D6 acting via D6/C6=C2484Q8.11D696,149
Q8.13D63rd non-split extension by Q8 of D6 acting via D6/C6=C2484Q8.13D696,157
Q8.14D64th non-split extension by Q8 of D6 acting via D6/C6=C2484-Q8.14D696,158
Q8.15D61st non-split extension by Q8 of D6 acting through Inn(Q8)484Q8.15D696,214
C23.8D63rd non-split extension by C23 of D6 acting via D6/C3=C2248C2^3.8D696,86
C23.9D64th non-split extension by C23 of D6 acting via D6/C3=C2248C2^3.9D696,90
Dic3.D41st non-split extension by Dic3 of D4 acting via D4/C22=C248Dic3.D496,85
C23.16D61st non-split extension by C23 of D6 acting via D6/S3=C248C2^3.16D696,84
C23.11D66th non-split extension by C23 of D6 acting via D6/C3=C2248C2^3.11D696,92
C23.21D66th non-split extension by C23 of D6 acting via D6/S3=C248C2^3.21D696,93
C23.26D62nd non-split extension by C23 of D6 acting via D6/C6=C248C2^3.26D696,133
C23.28D64th non-split extension by C23 of D6 acting via D6/C6=C248C2^3.28D696,136
C23.23D68th non-split extension by C23 of D6 acting via D6/S3=C248C2^3.23D696,142
C23.12D67th non-split extension by C23 of D6 acting via D6/C3=C2248C2^3.12D696,143
C23.14D69th non-split extension by C23 of D6 acting via D6/C3=C2248C2^3.14D696,146
Dic3.Q8The non-split extension by Dic3 of Q8 acting via Q8/C4=C296Dic3.Q896,96
C6.Q161st non-split extension by C6 of Q16 acting via Q16/Q8=C296C6.Q1696,14
C12.Q82nd non-split extension by C12 of Q8 acting via Q8/C2=C2296C12.Q896,15
C12.6Q83rd non-split extension by C12 of Q8 acting via Q8/C4=C296C12.6Q896,77
C42.S31st non-split extension by C42 of S3 acting via S3/C3=C296C4^2.S396,10
C6.C425th non-split extension by C6 of C42 acting via C42/C2×C4=C296C6.C4^296,38
C6.SD162nd non-split extension by C6 of SD16 acting via SD16/D4=C296C6.SD1696,17
C4.Dic63rd non-split extension by C4 of Dic6 acting via Dic6/Dic3=C296C4.Dic696,97
C2.Dic121st central extension by C2 of Dic1296C2.Dic1296,23
C4×S4Direct product of C4 and S4123C4xS496,186
D4×A4Direct product of D4 and A4126+D4xA496,197
C22×S4Direct product of C22 and S412C2^2xS496,226
C2×GL2(𝔽3)Direct product of C2 and GL2(𝔽3)16C2xGL(2,3)96,189
C8×A4Direct product of C8 and A4243C8xA496,73
S3×D8Direct product of S3 and D8244+S3xD896,117
Q8×A4Direct product of Q8 and A4246-Q8xA496,199
C23×A4Direct product of C23 and A424C2^3xA496,228
S3×SD16Direct product of S3 and SD16244S3xSD1696,120
S3×M4(2)Direct product of S3 and M4(2)244S3xM4(2)96,113
C4×SL2(𝔽3)Direct product of C4 and SL2(𝔽3)32C4xSL(2,3)96,69
C2×CSU2(𝔽3)Direct product of C2 and CSU2(𝔽3)32C2xCSU(2,3)96,188
C22×SL2(𝔽3)Direct product of C22 and SL2(𝔽3)32C2^2xSL(2,3)96,198
S3×C16Direct product of C16 and S3482S3xC1696,4
C4×D12Direct product of C4 and D1248C4xD1296,80
C2×D24Direct product of C2 and D2448C2xD2496,110
S3×Q16Direct product of S3 and Q16484-S3xQ1696,124
S3×C42Direct product of C42 and S348S3xC4^296,78
S3×C24Direct product of C24 and S348S3xC2^496,230
D4×Dic3Direct product of D4 and Dic348D4xDic396,141
C22×D12Direct product of C22 and D1248C2^2xD1296,207
C8×Dic3Direct product of C8 and Dic396C8xDic396,20
C4×Dic6Direct product of C4 and Dic696C4xDic696,75
Q8×Dic3Direct product of Q8 and Dic396Q8xDic396,152
C2×Dic12Direct product of C2 and Dic1296C2xDic1296,112
C22×Dic6Direct product of C22 and Dic696C2^2xDic696,205
C23×Dic3Direct product of C23 and Dic396C2^3xDic396,218
C2×C42⋊C3Direct product of C2 and C42⋊C3123C2xC4^2:C396,68
C2×C22⋊A4Direct product of C2 and C22⋊A412C2xC2^2:A496,229
C2×C4×A4Direct product of C2×C4 and A424C2xC4xA496,196
C2×S3×D4Direct product of C2, S3 and D424C2xS3xD496,209
C2×A4⋊C4Direct product of C2 and A4⋊C424C2xA4:C496,194
S3×C4○D4Direct product of S3 and C4○D4244S3xC4oD496,215
S3×C22⋊C4Direct product of S3 and C22⋊C424S3xC2^2:C496,87
C2×C4.A4Direct product of C2 and C4.A432C2xC4.A496,200
S3×C2×C8Direct product of C2×C8 and S348S3xC2xC896,106
S3×C4⋊C4Direct product of S3 and C4⋊C448S3xC4:C496,98
C2×S3×Q8Direct product of C2, S3 and Q848C2xS3xQ896,212
C4×C3⋊D4Direct product of C4 and C3⋊D448C4xC3:D496,135
C2×C8⋊S3Direct product of C2 and C8⋊S348C2xC8:S396,107
C2×D6⋊C4Direct product of C2 and D6⋊C448C2xD6:C496,134
C2×D4⋊S3Direct product of C2 and D4⋊S348C2xD4:S396,138
S3×C22×C4Direct product of C22×C4 and S348S3xC2^2xC496,206
C2×C24⋊C2Direct product of C2 and C24⋊C248C2xC24:C296,109
C2×C4○D12Direct product of C2 and C4○D1248C2xC4oD1296,208
C2×D4.S3Direct product of C2 and D4.S348C2xD4.S396,140
C2×C6.D4Direct product of C2 and C6.D448C2xC6.D496,159
C22×C3⋊D4Direct product of C22 and C3⋊D448C2^2xC3:D496,219
C2×D42S3Direct product of C2 and D42S348C2xD4:2S396,210
C2×Q82S3Direct product of C2 and Q82S348C2xQ8:2S396,148
C2×Q83S3Direct product of C2 and Q83S348C2xQ8:3S396,213
C2×C4.Dic3Direct product of C2 and C4.Dic348C2xC4.Dic396,128
C4×C3⋊C8Direct product of C4 and C3⋊C896C4xC3:C896,9
C2×C3⋊C16Direct product of C2 and C3⋊C1696C2xC3:C1696,18
C22×C3⋊C8Direct product of C22 and C3⋊C896C2^2xC3:C896,127
C2×C4×Dic3Direct product of C2×C4 and Dic396C2xC4xDic396,129
C2×C3⋊Q16Direct product of C2 and C3⋊Q1696C2xC3:Q1696,150
C2×C4⋊Dic3Direct product of C2 and C4⋊Dic396C2xC4:Dic396,132
C2×Dic3⋊C4Direct product of C2 and Dic3⋊C496C2xDic3:C496,130

Groups of order 98

dρLabelID
D49Dihedral group492+D4998,1
C7⋊D7The semidirect product of C7 and D7 acting via D7/C7=C249C7:D798,4
C7×D7Direct product of C7 and D7; = AΣL1(𝔽49)142C7xD798,3

Groups of order 100

dρLabelID
D50Dihedral group; = C2×D25502+D50100,4
Dic25Dicyclic group; = C252C41002-Dic25100,1
C52⋊C44th semidirect product of C52 and C4 acting faithfully104+C5^2:C4100,12
C25⋊C4The semidirect product of C25 and C4 acting faithfully254+C25:C4100,3
C5⋊F51st semidirect product of C5 and F5 acting via F5/C5=C425C5:F5100,11
C526C42nd semidirect product of C52 and C4 acting via C4/C2=C2100C5^2:6C4100,7
D5.D5The non-split extension by D5 of D5 acting via D5/C5=C2204D5.D5100,10
D52Direct product of D5 and D5104+D5^2100,13
C5×F5Direct product of C5 and F5204C5xF5100,9
D5×C10Direct product of C10 and D5202D5xC10100,14
C5×Dic5Direct product of C5 and Dic5202C5xDic5100,6
C2×C5⋊D5Direct product of C2 and C5⋊D550C2xC5:D5100,15

Groups of order 102

dρLabelID
D51Dihedral group512+D51102,3
S3×C17Direct product of C17 and S3512S3xC17102,1
C3×D17Direct product of C3 and D17512C3xD17102,2

Groups of order 104

dρLabelID
D52Dihedral group522+D52104,6
Dic26Dicyclic group; = C13Q81042-Dic26104,4
C13⋊D4The semidirect product of C13 and D4 acting via D4/C22=C2522C13:D4104,8
C13⋊C8The semidirect product of C13 and C8 acting via C8/C2=C41044-C13:C8104,3
C132C8The semidirect product of C13 and C8 acting via C8/C4=C21042C13:2C8104,1
C4×D13Direct product of C4 and D13522C4xD13104,5
C22×D13Direct product of C22 and D1352C2^2xD13104,13
C2×Dic13Direct product of C2 and Dic13104C2xDic13104,7
C2×C13⋊C4Direct product of C2 and C13⋊C4264+C2xC13:C4104,12

Groups of order 105

dρLabelID
C5×C7⋊C3Direct product of C5 and C7⋊C3353C5xC7:C3105,1

Groups of order 106

dρLabelID
D53Dihedral group532+D53106,1

Groups of order 108

dρLabelID
D54Dihedral group; = C2×D27542+D54108,4
Dic27Dicyclic group; = C27C41082-Dic27108,1
C32⋊D6The semidirect product of C32 and D6 acting faithfully96+C3^2:D6108,17
C33⋊C42nd semidirect product of C33 and C4 acting faithfully124C3^3:C4108,37
C324D6The semidirect product of C32 and D6 acting via D6/C3=C22124C3^2:4D6108,40
He3⋊C4The semidirect product of He3 and C4 acting faithfully183He3:C4108,15
C32⋊A4The semidirect product of C32 and A4 acting via A4/C22=C3183C3^2:A4108,22
C9⋊A4The semidirect product of C9 and A4 acting via A4/C22=C3363C9:A4108,19
C9⋊C12The semidirect product of C9 and C12 acting via C12/C2=C6366-C9:C12108,9
C32⋊C12The semidirect product of C32 and C12 acting via C12/C2=C6366-C3^2:C12108,8
He33C42nd semidirect product of He3 and C4 acting via C4/C2=C2363He3:3C4108,11
C9⋊Dic3The semidirect product of C9 and Dic3 acting via Dic3/C6=C2108C9:Dic3108,10
C335C43rd semidirect product of C33 and C4 acting via C4/C2=C2108C3^3:5C4108,34
C32.A4The non-split extension by C32 of A4 acting via A4/C22=C3183C3^2.A4108,21
C9.A4The central extension by C9 of A4543C9.A4108,3
S3×D9Direct product of S3 and D9184+S3xD9108,16
C9×A4Direct product of C9 and A4363C9xA4108,18
C6×D9Direct product of C6 and D9362C6xD9108,23
S3×C18Direct product of C18 and S3362S3xC18108,24
C32×A4Direct product of C32 and A436C3^2xA4108,41
C3×Dic9Direct product of C3 and Dic9362C3xDic9108,6
C9×Dic3Direct product of C9 and Dic3362C9xDic3108,7
C32×Dic3Direct product of C32 and Dic336C3^2xDic3108,32
C3×S32Direct product of C3, S3 and S3124C3xS3^2108,38
C3×C32⋊C4Direct product of C3 and C32⋊C4124C3xC3^2:C4108,36
C2×C9⋊C6Direct product of C2 and C9⋊C6; = Aut(D18) = Hol(C18)186+C2xC9:C6108,26
S3×C3⋊S3Direct product of S3 and C3⋊S318S3xC3:S3108,39
C2×C32⋊C6Direct product of C2 and C32⋊C6186+C2xC3^2:C6108,25
C2×He3⋊C2Direct product of C2 and He3⋊C2183C2xHe3:C2108,28
S3×C3×C6Direct product of C3×C6 and S336S3xC3xC6108,42
C6×C3⋊S3Direct product of C6 and C3⋊S336C6xC3:S3108,43
C3×C3⋊Dic3Direct product of C3 and C3⋊Dic336C3xC3:Dic3108,33
C2×C9⋊S3Direct product of C2 and C9⋊S354C2xC9:S3108,27
C3×C3.A4Direct product of C3 and C3.A454C3xC3.A4108,20
C2×C33⋊C2Direct product of C2 and C33⋊C254C2xC3^3:C2108,44

Groups of order 110

dρLabelID
D55Dihedral group552+D55110,5
F11Frobenius group; = C11C10 = AGL1(𝔽11) = Aut(D11) = Hol(C11)1110+F11110,1
D5×C11Direct product of C11 and D5552D5xC11110,3
C5×D11Direct product of C5 and D11552C5xD11110,4
C2×C11⋊C5Direct product of C2 and C11⋊C5225C2xC11:C5110,2

Groups of order 111

dρLabelID
C37⋊C3The semidirect product of C37 and C3 acting faithfully373C37:C3111,1

Groups of order 112

dρLabelID
D56Dihedral group562+D56112,6
Dic28Dicyclic group; = C71Q161122-Dic28112,7
C4○D28Central product of C4 and D28562C4oD28112,30
D4⋊D7The semidirect product of D4 and D7 acting via D7/C7=C2564+D4:D7112,14
Q8⋊D7The semidirect product of Q8 and D7 acting via D7/C7=C2564+Q8:D7112,16
D14⋊C4The semidirect product of D14 and C4 acting via C4/C2=C256D14:C4112,13
C8⋊D73rd semidirect product of C8 and D7 acting via D7/C7=C2562C8:D7112,4
C56⋊C22nd semidirect product of C56 and C2 acting faithfully562C56:C2112,5
D42D7The semidirect product of D4 and D7 acting through Inn(D4)564-D4:2D7112,32
Q82D7The semidirect product of Q8 and D7 acting through Inn(Q8)564+Q8:2D7112,34
C7⋊C16The semidirect product of C7 and C16 acting via C16/C8=C21122C7:C16112,1
C4⋊Dic7The semidirect product of C4 and Dic7 acting via Dic7/C14=C2112C4:Dic7112,12
C7⋊Q16The semidirect product of C7 and Q16 acting via Q16/Q8=C21124-C7:Q16112,17
Dic7⋊C4The semidirect product of Dic7 and C4 acting via C4/C2=C2112Dic7:C4112,11
D4.D7The non-split extension by D4 of D7 acting via D7/C7=C2564-D4.D7112,15
C4.Dic7The non-split extension by C4 of Dic7 acting via Dic7/C14=C2562C4.Dic7112,9
C23.D7The non-split extension by C23 of D7 acting via D7/C7=C256C2^3.D7112,18
C2×F8Direct product of C2 and F8147+C2xF8112,41
D4×D7Direct product of D4 and D7284+D4xD7112,31
C8×D7Direct product of C8 and D7562C8xD7112,3
Q8×D7Direct product of Q8 and D7564-Q8xD7112,33
C2×D28Direct product of C2 and D2856C2xD28112,29
C23×D7Direct product of C23 and D756C2^3xD7112,42
C4×Dic7Direct product of C4 and Dic7112C4xDic7112,10
C2×Dic14Direct product of C2 and Dic14112C2xDic14112,27
C22×Dic7Direct product of C22 and Dic7112C2^2xDic7112,35
C2×C4×D7Direct product of C2×C4 and D756C2xC4xD7112,28
C2×C7⋊D4Direct product of C2 and C7⋊D456C2xC7:D4112,36
C2×C7⋊C8Direct product of C2 and C7⋊C8112C2xC7:C8112,8

Groups of order 114

dρLabelID
D57Dihedral group572+D57114,5
C19⋊C6The semidirect product of C19 and C6 acting faithfully196+C19:C6114,1
S3×C19Direct product of C19 and S3572S3xC19114,3
C3×D19Direct product of C3 and D19572C3xD19114,4
C2×C19⋊C3Direct product of C2 and C19⋊C3383C2xC19:C3114,2

Groups of order 116

dρLabelID
D58Dihedral group; = C2×D29582+D58116,4
Dic29Dicyclic group; = C292C41162-Dic29116,1
C29⋊C4The semidirect product of C29 and C4 acting faithfully294+C29:C4116,3

Groups of order 117

dρLabelID
C13⋊C9The semidirect product of C13 and C9 acting via C9/C3=C31173C13:C9117,1
C3×C13⋊C3Direct product of C3 and C13⋊C3393C3xC13:C3117,3

Groups of order 118

dρLabelID
D59Dihedral group592+D59118,1

Groups of order 120

dρLabelID
S5Symmetric group on 5 letters; = PGL2(𝔽5) = Aut(A5) = 5-cell symmetries; almost simple54+S5120,34
D60Dihedral group602+D60120,28
Dic30Dicyclic group; = C152Q81202-Dic30120,26
SL2(𝔽5)Special linear group on 𝔽52; = C2.A5 = 2I = <2,3,5>242-SL(2,5)120,5
C5⋊S4The semidirect product of C5 and S4 acting via S4/A4=C2206+C5:S4120,38
C15⋊D41st semidirect product of C15 and D4 acting via D4/C2=C22604-C15:D4120,11
C3⋊D20The semidirect product of C3 and D20 acting via D20/D10=C2604+C3:D20120,12
C5⋊D12The semidirect product of C5 and D12 acting via D12/D6=C2604+C5:D12120,13
C157D41st semidirect product of C15 and D4 acting via D4/C22=C2602C15:7D4120,30
C15⋊Q8The semidirect product of C15 and Q8 acting via Q8/C2=C221204-C15:Q8120,14
C153C81st semidirect product of C15 and C8 acting via C8/C4=C21202C15:3C8120,3
C15⋊C81st semidirect product of C15 and C8 acting via C8/C2=C41204C15:C8120,7
D30.C2The non-split extension by D30 of C2 acting faithfully604+D30.C2120,10
C2×A5Direct product of C2 and A5; = icosahedron/dodecahedron symmetries103+C2xA5120,35
S3×F5Direct product of S3 and F5; = Aut(D15) = Hol(C15)158+S3xF5120,36
C5×S4Direct product of C5 and S4203C5xS4120,37
D5×A4Direct product of D5 and A4206+D5xA4120,39
C6×F5Direct product of C6 and F5304C6xF5120,40
C10×A4Direct product of C10 and A4303C10xA4120,43
C5×SL2(𝔽3)Direct product of C5 and SL2(𝔽3)402C5xSL(2,3)120,15
S3×C20Direct product of C20 and S3602S3xC20120,22
D5×C12Direct product of C12 and D5602D5xC12120,17
C3×D20Direct product of C3 and D20602C3xD20120,18
C5×D12Direct product of C5 and D12602C5xD12120,23
C4×D15Direct product of C4 and D15602C4xD15120,27
D5×Dic3Direct product of D5 and Dic3604-D5xDic3120,8
S3×Dic5Direct product of S3 and Dic5604-S3xDic5120,9
C22×D15Direct product of C22 and D1560C2^2xD15120,46
C6×Dic5Direct product of C6 and Dic5120C6xDic5120,19
C5×Dic6Direct product of C5 and Dic61202C5xDic6120,21
C3×Dic10Direct product of C3 and Dic101202C3xDic10120,16
C10×Dic3Direct product of C10 and Dic3120C10xDic3120,24
C2×Dic15Direct product of C2 and Dic15120C2xDic15120,29
C2×S3×D5Direct product of C2, S3 and D5304+C2xS3xD5120,42
C2×C3⋊F5Direct product of C2 and C3⋊F5304C2xC3:F5120,41
D5×C2×C6Direct product of C2×C6 and D560D5xC2xC6120,44
S3×C2×C10Direct product of C2×C10 and S360S3xC2xC10120,45
C3×C5⋊D4Direct product of C3 and C5⋊D4602C3xC5:D4120,20
C5×C3⋊D4Direct product of C5 and C3⋊D4602C5xC3:D4120,25
C5×C3⋊C8Direct product of C5 and C3⋊C81202C5xC3:C8120,1
C3×C5⋊C8Direct product of C3 and C5⋊C81204C3xC5:C8120,6
C3×C52C8Direct product of C3 and C52C81202C3xC5:2C8120,2
׿
×
𝔽